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ABSTRACT

The free jet mixing of parallel streams of different
fluids is of fundamental importance and interest. The
degree of mixing depends on the regime of flow in the
mixing region, i.e., laminar or turbulent, and the velocity
and density ratios.

In this work, similarity solutions were obtained for
laminar and turbulent mixing of two parallel incompressible
streams. The solutions apply to both similar and dis-
similar fluids in the two streams with any velocity or
density ratio and arbitrary laminar or turbulent Schmidt
numbers.

A solution is numerical in nature and a set of
solutions are presented in tabular form for a spectrum of

density, velocity and Schmidt numbers.
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I. INTRODUCTION

The behavior of adjacent free jets has been of interest
for many years. Tollmein® in 1926 first considered analytically
the mixing of two parallel streams of fluid. The hydrodynamic
stability of this type of flow was discussed by Lord Rayleigh®
as early as 1880.

The problem may be divided into two categories. 1In the
first category the two streams are of the same fluid and in
the second, the two streams are considered to be dissimilar
fluids. Flows in the first category are referred to as being
homogeneous, those in the second, are referred to as being
heterogeneous.

The homogeneous case 1s related to studies of jet engines
and rockets exhausts, while interest in the heterogeneous case
has been mainly in the fields of meteorology and oceanography
where so called density stratified flows commonly occur.
Recently, the concept of a gaseous core nuclear rocket hés
stimulated new interest in the free jet mixing of co-flowing
streams of dissimilar fluids. A better understanding of the
fundamental problem of free jet mixing, i.e., mixing which
takes place in the absence of solid boundaries, is needed for
all these problems.

The object of this work is to obtain similarity solutions
for the laminar and turbulent mixing of two dissimilar streams.
In both cases the nature of the solution is numerical rather

than closed form and tables of calculated results are



presented covering the whole spectrum of parameter variation.
The results are discussed in conjunction with experimental
results in Ref. 67.

The analytical treatment applies only to the similar
region of the flow field but no assumptions are made to limit

density ratio or Schmidt number in either the laminar or

turbulent case.




II. BACKGROUND

II-1 Homogeneous Case

The problem of laminar mixing in a half-jet is usually
considered in connection with a stability analysis. The
turbulent mixing problem is considered independently. In
certain instances the solutions of the laminar and the
turbulent mixing problems are related.

Most analytical investigations of either the laminar
or the burbulent problem consider the initial velocity
profiles to be shown in Fig.1I-1.1.

Each stream is assumed to have a plug £low velocity

distribution and no account is taken of boundary layer
development on the plate separating the two streams. How-
ever, there have been some papers given which do take the
initial boundary layers into consideration. The main
advantage of analytically investigating an idealized
velocity profile such as that shown above is that, while
sacrificing some generality, it allows similar solutions
to be obtained which are convenient to use in stability
analyses and contain only one parameter to be determined
experimentally in the case of turbulent mixing. Whereas,
those investigations which do consider the initial boundary
layers result in non-similar solutions with two or three
parameters. The initial boundary layer(s) do in the real
case definitely affect the flow in the mixing region a

short distence downstream from the separating plate.



Among those investigations of the turbulent mixing
problem which are based on the idealized initial velocity
profiles, the main difference in analyses has been in the
expression chosen to repfesent the eddy viscosity in the
mixing region. Several theories of so-called free
turbulence have been proposed. Prandtl's mixing length
theory,®? Taylor's free turbulence theory,®® Reichardt's
theory of turbulent mixing®® and Prandtl's exchange coeffi-
cient theory*® are most widely used and successful. These
are discussed in some detail in Abramovich's work on

turbulent jets.**

Taylors model of turbulence assumes

that tangential stresses in turbulent flows are caused by
vorticity transfer and not by momentum transfer as in
Prandtl's mixing length hypothesis. However, the expression
obtained for the turbulent shearing stress is the same for
both models with only a difference in the numerical value

of the mixing length.

Reichardt's theory of turbulent mixing results in the
reduction of the equations of motion to the form of the
generalized heat conduction equation. It is not widely
applicable.

The most commonly used of these theories are those
of Prandtl.%® The mixing length theory of Prandtl was used
by Prandtl and by Tollmien® in their investigations of the
turbulent half-jet problem and Prandtl's exchange co-
efficient theory was used by Goertler® in his analysis of

the same problem.




Prandt1*® used his concept of the mixing length to
represent the apparent shearing stress of turbulent momentum

interchange according to the relation

du| du
dy| dy

2

xy = P4

where 4 1s the mixing length.
Prandtl considered the velocity profile shown in
Figure II-1.1 to exist at time t equal to zero. With

the assumptions
u = u<y:t): v=20

and using his mixing length concept to represent the
turbulent shearing stress, he wrote the momentum equation

as

A 2

u %%‘ 3%y II-1.2

Y2

By assuming the mixing length ¢ to be proportional to the
width of the mixing region b, where b = b(t), and intro-

ducing a new independent variable

6 = y/b
and a new dependent variable

£f(g) ~u
Prandtl obtained the solution

u(y,t) = 1/2(mtuz) + 1/2(wm-u) (2(H)- 22
I1-1.2
with



the quantity
B = 4/b

is the only empirical constant to be obtained from experi-
mental data. The velocity in the mixing region does not

approach the free stream velocity asymptotically. At

y=#%D
the velocity reaches the free stream velocity with a

discontinuity in

d2u
dy2

Tollmien also considered the velocity profile shown
in Figure II-1.1. At x = 0, two parallel streams meet.
Stream 1 has constant velocity ua and stream 2 constant

velocity uz with

uy > Uz
Downstream a mixing region is formed in which the dis-
continuity in velocity is mapped out. Tollmien's analysis
was for the case of turbulent mixing with

Uz =0
i.e., a half-jet.

For the two dimensional incompressible mixing region,
the equations of continuity and momentum may be written

ad oV o IT-1.%

u oy oy =-% —&3 I1-1.5




Free~jet mixing

I
|
x=0 Figure TI-1.1



Tollmien® integrated the equation of continuity by
using a stream function and defined the stream function

in terms of the new variable

6 = y/x

v=xF(g) I1-1.6

He used Prandtl's mixing length hypothesis for the tur-
bulent shearing stress in the mixing region and assumed
that the mixing length is constant across each cross
section and increases linearly with x, i.e., £ = cx.
Tollmien combined equations II-1.6, II-1.1 and II-1.5

to obtain the following differential equation
FF" + 2¢2 F" F"' = 0 II-1.7

He pointed out that this is solved by

F' =0 I1-1.8
or by
F + 2¢3F" =0 I1-1.9

He stated that equation II-1.9 applied between the
limits

g1 and g2
and equation II-1.8 applied outside these limits.

Tollmien's solution was

F = Cie™® + 0266/2 cos 1%9 + Caee/z sin.£29 IT-1.10




He then applied the following five boundary conditions

to solve for the constants Ci, Cz, Csz, 91 and g=.

F' (g2) = 1
(62). = 0
F' (g2) =0
' (62) = 0
F (g2) = 62 IT-1.11

Tollmien's solution agrees reasonably well with the experi-
mental data of Albertson®* and Iiepmenn and Iaufer.*® The
main disadvantage of his solution lies in the fact that
F", %g%, is discontinuous at g: and gz and the velocity
in the mixing region does not asymptotically approach the
free stream values. It will be recalled that Prandtl's
solution displayed these same characteristics. Schlichting
points out that this is a general property of all solutions
based on Prandtl's mixing length hypothesis and calls this
an esthetical deficiency of the hypothesis.

Kuethe® extended Tollmien's analysis to the case

where

u= £ 0

His analysis proceeded in a mamner analogous to that of
Tollmien except in the application of the fifth boundary

condition. Tollmien's fifth boundary condition was

F (g2)= 62

which is equivalent to stating that the transverse

velocity is equal to zero. Kuethe's fifth boundary
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was

u(e1)v(er) + u(g=)v(ez) =0 II-1.12
or

m[-F(62-01)+62F'(62-61)] = F(62)-02F'(61) 11-1.13
vhere

m = ua/wa

Kuethe stated that this condition was suggested by
von Karman and corresponds to the assumption that no external
forces are acting on the total fluid system perpendicular
to the main flow. He pointed out that neither the width
of the mixing region nor the u-velocity profiles are affect-
ed by the use of this condition. However, the v-velocity
profiles and g1 and g2 are affected an appreciable amount.
Velocity profiles for m = 0, 0.5 and 0.8 were given.
Goertler* also considered the velocity profile shown
in Figure II-1.1. He used the equations of continuity
and momentum as given by equations TII-1.4 and II-1.5

and defined the turbulent shearing stress by

' = ou
T,Xy = pe€ 3y IT-1.14

In this expression ¢ is the eddy viscosity or the turbulent

exchange coefficient and is given by
€ = X1b(uz-u) IT-1.15

This is Prandtl's exchange coefficient hypothesis. In
this expression, b denotes the width of the mixing region

and xals an empirical constant. Goertler assumed that the




mixing region spreads linearly with x, i.e., b =cx and
that the exchange coefficient does not vary across a cross
section. Substituting equations I7-1.15 and I1-1.14

into equation II-1.5 and introducing a stream function
p = xUF(g)

Goertler obtained the following differential equation.

F'" + 2¢ FF" =0 I1-1.16
In this equation

o=1/2 (xlcx)“/2 I1-1.17
and

£ =0 y/X

Goertler applied the following boundary conditions

g F'(e) =u/U =1+
cF'(o) =0/U =1 Ir-1.18
o F'(~=) =u/U =1-)

where

U=1/2 (w1 + uz2)

1l

and

A Ui - uz/ul + U2

il

He solved equation II-1.16 by assuming a power series
expansion of the form

o F(g) = Folg) + aF2(g) + 2%Fa(g) + ...  II-1.19

Substituting this expression into equation II-1.16

together with Fo=¢ and equating coefficients of xn, he

11



obtained differential equations for Fi, Fz, etc. The

equation for Fi is

Fi'"' o+ 2¢F" = 0 II-1.20

The solution of this equation with the boundary conditions

I7-1.18 is

Fal(g) = erfy = 5 jg ez II-1.21
e}

or in terms of the velocity u

U4y w -u
= =52 [+ i erf ¢] II-1.22

This solution is the first order approximation to the exact
solution.

Goertler's velocity profile approaches the free
stream velocities asymptotically and there are no dis-
continuities in any of the velocity derivatives as in the
case of Prandtl's and Tollmein's solutions. However, the

independent variable in Goertler's solution is

£ = oy/%
This means that the x-axis should be the line ¢ = O. Then,

according to Goertler's second boundary condition

oF'(0) =g =1

along the x-axis or
u = 1/2 (1.11-*—1.12)

This is clearly not true from the experimental data of

Albertson** and Iiepmann and laufer.®?




Abramovich** points out that if Goertler's theoreti-
cal velocity profile is displaced so that the boundary of
the jet (y = 0) passes along the line ¢ = 0.3, then this
profile passes close to the experimental points. He
states that this means that Goertler's theory requires two
experimental constants ¢ and ¢o, whereas Tollmien's theory
is made to correspond with the data with the aid of only
one experimental constant.

Yen®® clarified the discrepancy discussed above by
pointing out that Goertler's theoretical velocity profile
is correctly placed with respect to the boundary of the
jet by applying von Karman's boundary condition, as
discussed in connection with the work of Kuethe, instead

of the condition

of'(o) = 1
However, an error in Yen's analysis invalidated his con-
clusions except for the case of

u =0

This will be discussed in greater detail in a later section.
Iessen,® Chiarulli® and Iin” have solved this same

problem for the case of laminar mixing in connection with

their stability analyses. The differential equation to

be solved is

™ 4 1/eff" = 0 I1-1.23

15



where

and

1l
ed
|

K VX

The boundary conditions are

f' (o) = 1
f'(o) = 0.5 II-1.2%
f'(-=) =0

Iin” points out that equation  II-1.23 together with
boundary conditions  II-1.24% may be converted to Goertler's
equation for turbulent mixing, equation  II-1.16, together

with boundary conditions II-1.18 by use of the following

relations
£1 (77) - M
1A I1-1.25
n =2€ /1+x

Thus the laminar solution and the turbulent solution of
Goertler are related through a transformation of variables.
Chiarulli and Lin solved equation I1-1.23 for x = 0.2,
0.4, 0.6, 0.8 and 1.0. Errors in the solution of Goertler
were pointed out and corrected. However, Goertler's solu-
tion method was used. As previously mentioned, Iessen
used the method of analytic continuation to numerically

integrate equation  II-1.23 and obtain the solution.




Crane** has extended Goertler's analysis to the case
of compressible flow with temperature difference. The
width of the mixing region was shown to depend upon the
difference of the stagnation enthalpies of the two streams
and on the Mach numbers of the flow.

The effect of the initial boundary layer development
on the plate separating the two streams on the flow profiles
in the mixing region has been considered by Torda, et. al.,*S
Chapman and Korst*® and by Ackermann.*7

Torda, et. al. considered the turbulent,incompressible,
symretric mixing of two parallel streams; i.e., both free
streams have the same velocity. The von Karman intergral
concept was applied to the momentum and energy equations to
evaluate the thickness of the mixing region and the velocity
distribution in it. Velocity profiles were presented for
three downstream positions. Also, curves showing the in-
crease in width of the mixing region with distance down-
stream were presented. These curves showed a considerable
amount of curvature in the region immediately behind the
plate as opposed to straight lines obtained from the
analyses of Tollmien, Kuethe and Goertler. It was pointed
out that this is in qualitative agreement with the experi-
ments of ILeipmann and Iaufer.

Chapman and Korst considered the problem of free-jet
mixing with the initial velocity distribution given by

power law, power series and broken line representation.

15
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A momentum integral method was applied to the linearized
equations of motion to obtain a solution. Multi-parameter
presentations for the velocity distribution in the mixing
region were given.

The laminar incompressible mixing of two streams of
different velocities with consideration of the initial

boundary layers has been considered by Ackermann.

II-2 Heterogeneous Case

Here also the problems of laminar and of turbulent
mixing are generally considered separately. The initial
velocity profiles are again assumed to be as shown in
Figure II-1l.1. However, now the slower moving stream is
assumed to have a higher density than the faster moving
stream. The buoyancy forces due to the density variation
are usually neglected.

The laminar mixing problem has been considered by Pai,
Keulegan,*®, Iock*® and Potter.5° ©Pai considered the flow
to be compressible. He used a stream function to integrate
the continuity equation. Then, using the distance along
the jet axis and the stream function as independent variables,
he reduced the diffusion equation and the equation of motion
to the form of the generalized heat conduction equation.
These equations were then solved simultaneously by step-
wise numerical procedure.

The analyses of Keulegan, Iock and Potter are all

for the case in which the two streams are immiscible, i.e.,




there is no molecular diffusion. Xeulegan considered a
velocity profile such as that shown in Figure II-'1.1
with

\.].2=O

The viscosities and densities of the two streams were
assumed to be not the same. By writing the continuity
equation and the equation of motion for each fluid and
solving them simultaneously, he determined the velocity
distribution in the laminar boundary layers at the inter-
face, the thickness of the layers and the stress at the
interface.

Iock*® independently considered the same problem. He
showed that the solutions depend only on the ratio

112/ U1

of the velocities of the two streams and the product

t,,!

p'u

where

! :-p-—?* a,I'ld ! =E§
T B

His results are in general agreement with those of
Keulegan.*4®

Potter*® extended Keulegan's analysis to the case
where both fluids are moving.

The turbulent mixing problem has been investigated
by Szablewski®’®’1° and by Pai.'* Szablewski in a series
of articles considered the mixing of parallel streams of

different temperatures. This problem is obviously closely

7
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related to the one in which the two streams are of
different chemical composition. The special case in which
the two streams have nearly the same velocity but widely
differing temperatures was first considered. This
assumption results in a simplification of the differential
equations. Velocity and temperature distributions were
given for various temperature ratios.

The problem of the turbulent mixing of parallel
streams with unrestricted differences in velocity and
density was considered by Szablewski® in a later paper.

In this case the problem was simplified by linearizing the
equation of motion. Prandtl's exchange coefficient
hypothesis was used and the ratio of eddy viscosity to

eddy conductivity was assumed to be 1/2, i.e., a turbulent
Prandtl number of 1/2. Velocity and temperature distri-
butions were again given for various temperature ratios.
His analysis showed that as the density differences between
the two streams is increased, the mixing region becomes
displaced in the direction of the less dense stream.

Pail?t

considered the two dimensional incompressible
jet mixing of two different gases. From the equations of
continuity, motion and diffusion he obtained the following
generalization of equation II-i.16 given by Goertler®

for the homogeneous case:

"t n _ 2A! 2 _
"+ 2¢FF" = ————-Q————l_A,O_F, IT-2.1




In this equation, F has the same meaning as that given by

Goertler. A' is given by

DI
Al = TrA

where

I'=P7P2 gng ) =Rk

p1tp=2 H1itpe

Obviously, if p, = p, then A' = 0 and the equation reduces
to Goertler's equation for the homogeneous case. This
equation was apparently first derived by Hffor the case
of turbulent mixing of immiscible fluids. Pai considered
the case in which the density difference is much less than

- the velocity difference, i.e.
I'<< )

He concluded that the first order effect of density

differences of the two gases on the velocity distribution

is small.

19
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IIT. ANAIYTICAL DEVELOPMENT

So-called "similar" solutions are desirable
for several reasons. First of all, they allow a
partial differential equation to be reduced by
combination of variables to an ordinary differential
equation. This factor is especially important in
the case in which a set of partial differential
equations may be reduced to one or more ordinary
differential equations. Another desirable feature
of similar solutions is that by their very nature
they afford a straight forward and simple method of
correlating experimental data. Finally, if a
similar solution can be obtained, then by properly
defining a reference length, the independent
variable from the similar solution becomes the
independent variable in the Orr-Sommerfield equation

of hydrodynamic stability.




IIT-1 Homogeneous Laminar Mixing

Only the case of isothermal, incompressible mixing
will be discussed here. TFor this case, as given by

Schlichting, ®°® the equation of continuity may be written

ou , oV _ -
5+ 5y 0 ITz-1.1
The Navier-Stokes equations are given by
W, A Ay 2P 22u . 2Pu
xX-direction p[ T U VY ] 3x #(axz + aye)
oY EL. OV -1 %y ﬁ__
y-direction p[ + Uy + VS ] -3yt p(axg aye)
I11~1.2

With the usual boundary layer assumptions that

2l )},
3X
|v' << |u| IT1-1.3

the Navier-Stokes equations and the continuity equation may
be reduced to "Prandtl's boundary layer equations".

2

ou o o ﬁﬁ u
p[ + uaX + v ] + 372
ou /v ITIT-1.4
ax T oy = 0

Assuming steady state flow and neglecting the variation
of pressure in the flow direction, which is very small in
the case of free jet mixing, these equations may be further

reduced to give

QU _ o 220

o4, oV IT1I-1.
X + 5y 0 5'
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The boundary conditions are

wx,o ) = u,

u(x,-=) = u, ITI-1.6

It can be shown that the application of von Karman's
third necessary boundary condition does not affect the
similarity solution obtained from equations III -1.5 with
boundary conditions  ITI-1.6

The equation of continuity may be integrated by intro-

ducing a stream function y such that

It

u ==L III-1.7

Equations IIT-1.5 may then be reduced to

') W (22yq -, 2D
[ (52 -8 (B - v B8 ITI-1.8

with the boundary conditions

é&%%;ﬂl =, éﬂig%:ﬁi = TII-1.9

To determine if a similar solution of equation III -1.8
with boundary conditions IIT-1.9 is possible, an affine
transformation is applied. A new set of variables p', x'

and y' are defined by the following relations

4’! — a'wl
X = prx!
y = sy' II11-1.10

22




If these relationships are substituted into equation
I11-1.8, and it is required that the new equation be of
the same form as the previous equation, then the following

relation must be true
r/sa =1 IIT-1.11

Substituting equations I1T-1.10 into the boundary

conditions given by equations III -1.12 gives

i 1
& M’—g—y’&iﬁ) -, III-1.12

If these boundary conditions are to be invariant under

the affine transformation, then

a/s =1 II1-1.13

Combining equations III-1.13 and III-1.11 gives

r/sa = r/s® = 1 IIT -1.14
or

Jr/s =1 I1I -1.15

Combining equations III-1.15 and III-1.10

s = y/y' = /r = /x//x! ITT-1.16
or

y//x =y //x! I1T-1.17

Thus, the quantity y//X is invariant under the affine

transformation and a new independent variable n may be
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defined as
n = Cy//x I1I-1.18

This may be put into dimensionless form by defining the

constant C by

c = /fi/v TTT-1.19

wvhere U is a reference velocity and p is the kinematic

viscosity in equation  III-1.8. A new dimensionless

independent variable is then given by

n = v/0/vx IIT-1.20

Combining equations ITI-1.13, I1TI-1.15, and
IT1-1.10

a=y/y" =/ = /X//X I1I-1.21

or
b/ /% = ¢'//x" IIT-1.22

Thus, the quantity ¢//X is also invariant under the
affine transformation and a new dimensionless dependent

variable may be defined by
f(n) = p/JUvx II1-1.23

Using equations I1I-1.23 and ITI-1.20, equation
IIT-1.8 may be transformed from a partlial differential
equation with dependent variable y and independent variables
x and y into an ordinary differential equation with
dependent variable f and independent variable ng. Performing

the indicated algebraic manipulations, equation  IIT-1.8




becomnmes

" 4 12 " = 0 ITI-1.2%

The boundary conditions obtained from equation III-1.12.

are
' (w) = %1-1—
£1(-=) = 32 II1-1.25

Fquation  III-1.24 with boundary conditions III-1.25

is the same as equation IT -1.23 with boundary conditions
I1-1.2%. Various solutions of this equation are discussed

in Section IT -1. The solution method of Iessen® will be
described in greater detail here, since the method is
generally applicable and will be used in connection with
the heterogeneous’ problem. The method is sometimes referred
to as "analytic continuation'.

Equation III-1.24 may be written

f"'= - 1/2 £f" IIT-1.24

This expression may then be easily differentiated to obtain
expressions for the fourth, fifth, and higher derivatives.
Expanding the function f in a Taylor series gives
Flpew) = £(n) + £ (n)w + £ (/2 + "' (n)uw®/6 +

+ £V ()we/2k + £V (n)wS/120 + ... III-1.26

Similar expressions may be written to represent the
first derivative ! and the second derivative f". Now,
if £, ' and £" are known for some large negative value
of the independent variable pn, then fIII, flv, fV etc. may

be calculated for that value of p from equation III-1.24
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and the expressions obtained by differentiating equation
III-1.24%, Equation III-1.26 and similar expressions

for f' and f" may then be used to calculate f, f!' and f"
at n + w. By repeating this procedure, equation III-1l.24
may be integrated over the entire interval of ne

To obtain the values of f, f' and f" for large negative
n, an asymptotic solution of equation III-1.2% is obtained
which 1s valid for large negative values of n. The manner
in which the asymptotic solution is obtained depends upon
whether u> = 0, i.e., a half-jet; or both streams are in
motion.

If v = 0, then from the second of equation III-1.25,
the following is true

T’ - == 0
f1(n) -0
f(n) - -8 III-1.27

Substituting the last of these relations into equation
III-1.24, it can be easily shown that

f'in) - ka e1/2 Sn s M o - IT1-1.28

This is then the desired form of an asymptotic expression
for ' good for large negative values of n. From this,
expressions for f and f" may also be obtained. However,
before these expressions may be used, the values of the
constants ki and S must be determined. Iessen used the

following technique:




He first defined a new dependent variable g and a new

independent variable X by the following relations

X = Sng ITI-1.29
Equation III-1.24% is transformed to
q"" + % qq" = 0 I11-1.30

If wa is used as the reference velocity U, then the boundary

conditions from equations III-1.25 become

(=) = 1
ft(-=) =0 ITT-1.31

The relationships expressed by equations III-1.27 become

X = -
Q'(x) -0
a(x) - -1 IIT-1.32

Differentiating the first of equatiorsIII-129.
qQ'(x) = % £'(n) 3
or

5= [f1(n)/a (=) TI1-1.33

Substituting the first of equatiomsIII-1.31.

S=1/ /=) III-1.34
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From equation III-1.28, it follows that for large

negative values of x, q may be represented by

a(x) = Bo + B /2% L B X 4 ps /2T 4 ...
IT1-1.35

Substituting this relationship into equation  III-1.20,
Bx

equating coefficients of e , n=1, 2, 3 and recalling

that q (-») = -1; it can be easily shown that

Bo = -1

Br = 1

Bz = -1/4

Ba = 5/72 ITI-1.%6

Equation IT1I-1.35 may be differentiated to obtain
expressions for q' and q".

Using these expressions to represent g, q' and q" for
some large negative value of x, equation  III-1.30 may be
integrated by the method of analytic continuation. Once
the integration has been carried to large positive values
of X, & may be determined from equation  III-1.3%4.

The solution to equation  III-1.2% is then obtained
by transforming back using the first of equations ITI-1.29.
Finally, the asymptotic form of f(n), good for large

negative values of g, is

f(?’)) = To + Tlel/QSn -+ Tzesn + Tsej/gsn 4 000
I11-1.%7

where




To = -5

Ty = S
Tz = -S/4
Ts = 53/72 III-1.38

If uz £ 0, then the method just described is not
applicable since f(7) becomes infinite for large negative

values of 5. In this case, the transformation

f(n) = [w(nldy III-1.39

is used. ZEquation III-1.24% becomes

wlo- w2 g —% ww'2 = 0 ITT-1.40

wHI

with boundary conditions

W(oo) = %‘l'
_uz
W(-w) = = IIT-1.41

if uz is again used as the reference velocity U, then for

large negative values of g

W(n) - U-Z/ul = Q01 III—1.42

Equation  III-1.40 becomes

W .w,] - w||2 + _%: o,lwfz = O’ T’ - - III"lo)'l'B

It can be shown that a solution of this equation is given
by

V=g + 23 ferfe (-/o 3] IIT-1. 44
/o1

29



30

For large negative values of g, w, W' and w" may then be

represented by

2 1 1 1.3 1e3e -X=
V=01 -2 [ - 5%5 + 5555 - 23X75] ©
‘/11'_.'01
II1-1.45
2
w! = 201 e“X IIT-1.46
v o
P=3
w' o= - 2ala n e~X IIT-1.47
v
where
X = /0'1 'g III'1°LI'8

Using these expressions, the method of analytic continuation
may be applied to equation  IIJ-1.40. However, in this |
case the solution becomes trial and error because the
constant C: can not be easily evaluated. Thus, Ca is
assumed and equation  III-1.40 is integrated to large
positive values of n. The correct value of Cy, is that

one for which

w(ie) = 1 ITT~-1.49

The second boundary condition is satisfied by the asymptotic
expression for w, i.e., equation III-1l.44. Both of these
cases were discussed by ILessen. However, he obtained a

solution for the case in which uz = 0 only.

ITI--2 Homogercous Turbulent Mixing
Following the steps outlined in section TI1T -1, the

Navier-Stokes equations and the equation of continuity are




reduced to

au ou ou
VTV ey TV e
AU | OV _ -
Del=0 IIT-1.5

The following development parallels that given by
Schlichting. Turbulent flow is usually described
mathematically by separating it into a mean motion and a
fluctuating or eddy motion. Thus, the instantaneous
velocity components u and v in the x and y direction

respectively are written

u=1u+ u'
vV =1v+ v III-2.1
where U and v are the time-average velocity components and

u' and v!' are the fluctuating components. Introducing equa-

tions JIT-2.1 into equations III-1.5 and time averaging

— dqu , T ; au' ou! _ 3 u
U.aX-l Va_y'i‘u 3% + N 372
u v _ g ool avl IIT-2.2

With the aid of the second of equations III-2.2, this may

be written as

o
., u
p[u ﬁ— + v ﬁ—] + T (AETZ) S% (pu'v') =y %§2

ITT-2.3
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Neglecting the term containing the molecular viscosity this

becomes

G%+?§%=%5’i’%+%§x IIT-2.4
where

ox < 'bﬁTz
and

Txy = -putv’

These quantities are "apparent" stresses due to turbulent
flow or Reynolds stresses. The term containing oy 1s
usually neglected in accordance with the boundary layer

assumptions. The equations to be solved are then

1S - LA

ax+ay"o

* - T
—au |, vau _ 1 7'xy I11-2.
Uix + v 3 " p oY 5

Integrating the continuity equation using a stream function
and substituting equations I11-1.14 and II-1.15,

Goertler® reduced these equations to
w (Ze ) 2w (@) xox (wwe) ¥ 11T-2.6
3y avox’ T ax ‘ayr! T \Matte) Gy .

Applying an affine transformation it can be shown that y/x
and ¢/k are invariant under the transformation. It is thus
convenient to define a new dimensionless independent variable

£ by




- X
£ =0% IIT-2.7

where
o = %:()<1CA)—1/2
and
A = U1 -U>
T uatus
A new dimensionless dependent variable F(g) is defined by

F(g) = p/UX III -2.8

Using equations III-2.8 and III-2.7, equation III-2.6

may be transformed to

F"' + 20FF" = 0 I11-2.9
The boundary conditions are

oF ! (=) = gr= 1+ 1

oF'(-=) = F& = 1-a II1I-2.10
In this case the reference velocity U is given by

U=‘%(u1+1l2)

It will be recalled from section IT-1 that ILin pointed
out that equation III-2.9 with boundary conditions T1r-2.10
may be converted to equation ITI-1.24 by use of the re-

lations

, il
£ () - Fple)

n=2/ ) ¢ I1-1.25
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The important relationship between the solution of the
homogeneous turbulent mixing problem by the method of
Goertler and the solution of the homogeneous laminar mixing

problem is thus re-emphasized here.

III-> Heterogeneous Laminar Mixing

This problem may also be directly associated with a
hydrodynamic stability analysis of the mixing region flow.
However, at the present time no similar solution for the
velocity and density profiles in the mixing region has been
obtained without certain simplifying assumptions (see
section TIT -2).

The equation of continuity for this case must be

written as

alou) . 3(pv) _ -
3X + 5y =0 I11-3.1
because
s oV
ax T3y <O

due to molecular diffusion. To obtain the velocity, and
density profiles in the mixing region, equation III-3.1
must be solved simultaneously with the species diffusion
equation and the equations of motion. An affine trans-
formation to these equations was not found. Therefore, a
different approach was necessary to obtain a similar solution.
The equation of continuity may be written in terms of

the molar density C and the molar average velocities




* ¥*
u and v as

* *
a(Cu ) | alCv ) _q4
X 3y

Rewriting, this equation becomes

* *
O + &g 4w B4 v B -0

0X oy

ITi-3.2

ITT-3.2

If it is assumed that the pressure and temperature of the

system remain constant, then the molar density C 1s also a

constant and the last two terms in equation

vanish.

average velocities

aut | avt
X Y

is then given by

ITI-3.2

The equation of continuity in terms of molar

IIT-3.3

Next, the diffusion equation must be written in terms

of u*, v* and p.

may be writvuven

The equation of continuity of component A

3N 3N
an + Ay _ 0
X 3y

where N, is the molar flux of component A.

IIT.-3.4

The molas concentration of component A CA, the mole

fraction of component AXA and the velocity components of

species 1 u, and vy are related by

1

where 8§ is

= XA(NAX + NAy) -8 5%

= Cpuy

aCA

BCA

the molecular diffusivity.

III-3.5

I11-3.6
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NAx + NBx = CAuA + CBuB
NAN'+ NBy = CAVA + CBVB CITII~3.7

Combining equations ITI-3.3 through III-3.7 and neglect-
ing diffusion in the direction of bulk flow, the equation of
continuity of component A becomes

3C 3C 3%C
A A A
* Y III-3.
‘ T T 3y Y3 ~5.8

I

The relationship between CA and p must now be established.
Defining the mass concentration of components A and B by

Py and PR respectively, the total density p is given by

P PA + pB III."309

or

fl

p=CpMy + CBMB IIT-3.10

where M, and MB are the molecular weights of components A
and B. Since G, + CB = C and C is a constant,
3y aCB
— D IIT-3.11
oX; Xy

Combining equations  III-3.11 and III-3.10

3C

20 _ - _A

AX (MA MB) AX

3C

20 _ - A
3y (MA MB) dY III-3.12

Equations ITI-3.12 may now be substituted into equation

III-3.8 to give the desired form of the diffusion equation.

2
w2 g v %?[ -5 28 II1-3.13
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Before the momentum equation can be written in terms
of u*, v* and p, the relationship between the mass average
velocity v and the molar average velocity v’ mst be

established.

The mass average velocity v is by definition given by

n
T Pivi
i-y ~  pPafatepVp
Ve = e e v+ vy ITI-3.14
. TP
l=1

where Wp and wp are the weight fractions of A and B re-
spectively. Since Wy +oWg = 1, the difference between v and

v¥ may be written

v - v¥ = WpVp t WRUp - (VA+WB) v I1T -3.15
or

v - v¥ =~WA(VA—V*) + wB(vB—v*) 111-3.15

The molar flux Ji* relative to the molar average
velocity v* is given by

* aCj_
— - * = - — —Ja
J; = Ci(vi v¥) 8 7 III-3.16

Using this relationship to substitute for Va-V* and
vB—v* in equation ITT-3.15, the difference between v
and v*¥ becomes

w 3C W 2C .
Ay A _ "B B III-3.17

V‘V*z’qﬁay " Ch ey

or
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- 3C
)A

V-v¥* = - (MA MB v III-3.18

o I

Finally, substituting from the second of equations III-3.12

v - v* = - % %‘?r III-3.19
Similarly,
u - ur = - % 2L ' III-3.20

The x~-component of the momentum equations may be

written

a(g ) a(e v) _ 3 (k Q4 III-3.21
N 3y

Here the usual boundary layer assumptions have been made and
the pressure drop in the flow direction has been neglected.
The body force term in the y-component of the momentum
equations has been neglected thus eliminating that equation
on the basis of the boundary layer assumptions. When the
body force term was included in the analysis, a similar
solution could not be found.

Equation ITT-3.21 is written in terms of mass aver-
age velocitles. The derived relationships between u and u*
and v and v* will now be used to rewrite this equation in
terms of molar average velocities. Rewriting equation

I1I1-3.20

u - u* = é‘fz IIT-3.20

'blé

However, Qﬁ << §§ and therefore u ™ u*. Thus in accordance

with the boundary layer assumptions, it will be assumed

that




u = u¥ III-3.22

Substituting equations 1IT-5.22 and ITI-3.19 into equa-
tion  IIi-3.21 and simplifying by use of equation III-3.3

« 3(pu*) x alpu*) _ 3 au* x 2P
W TV Ty oy LVP 3y + 80 ]
IIT-3.23
or
alou*) .y 3lpu*) _ 3 ux 30
u* 3X + Vv e =v ay_[p 3y + Ku* ay]
III"B.?“’
where
K = 1/3c I1I-3.25
and Sc is the Schmidt number defined by
Sc = v/s III-3.26

At this point it is convenient to divide the further
discussion into two cases. The first case considered will
be for a Schmidt number of unity and the second case will

be for an arbitrary Schmidt number.

Case 1 Sc = 1

If the Schmidt number is unity then equation  III-3.24

may be written as

2
we 2ot e alout) o 2lgun) IIT -3.27

The equations which are to be solved simultaneously to
obtain the velocity and density profiles in the mixing

region are
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BX ay - III*B\B

20 e _ g % )
ux 92+ v S0 = 8 528 TIT-3.13

wr 2(ou*) oy aloux) a2 (pux)
3K 3y 3y2

III"3027
The boundary conditions are
WX, «) =wm
U—(X: "°°) = Uz
p(X, ©) = p1
p(X: -w) = P2 III“3|28

After once again integrating the continuity equation
using a stream function, the search for a similar solution
is carried out by applying an affine transformation to the
remaining equations and the boundary conditions  III-3.28.
The quantities y//x and p//x are found to be invariant
under the transformation. Thus new independent and
dependent variables may be defined exactly the same as

for the homogeneous laminar case described in section ITI-1

i.e.
() = ¢,// Upx ITI-1.23

It is also found that

p = pln) III-3,29
Using these three relationships equation III-3.27, rewritten
in terms of the stream function y, may be transformed to

_f [Pf']”
P = — ~3.30




|

Equation I11-3.13, rewritten in terms of the stream

function y, transforms to

11
Lo ITI-3.31

Combining equations IT1-3.31 and III-~3.30

1]

% _ %%_‘: ITI-3.32
Integrating,

In p' = In[pf'] + In A I11-3.33
Simplifying,

p' _ _Af"

ra TAT! III-3.34

Integrating again,

In p = -In[1-Af'] + In B III-3.%5
Simplifying,
B | IT1-3.%6
P =ITEFT -3

Differentiating this relationship to find p' and p" and
substituting these relationships into equation III-3.31

gives

we oo, A w _ =2Af"2
b + 5 I = m III—3.37

The boundary conditions for equations  III-3.37 and II1I-

3.326 are from equations ITI-3.28
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_ Uz
fl(—m) U
ple) = p
pl-=) = p : II1-3.38

In this case the reference velocity U is again taken as
u. Substituting these relatisnships into equation ITI-
3.36, gives two equations in the two unknowns A and B.

Solving these equations gives

A - NI
DA

B = A(1~-1) _3,
pr [ 2] TIT~3.39

where

\ = Uz ~Us
Ui+uUgz

r = Pizp2
pr+p2=2
Thus, if the two streams have the same density, then T
and A are equal to zero and equation III-3.37 reduces

to the homogeneous equation III-1.24,

It is proposed to solve equation III -3.37 using the
method of analytic continuation. Equation III-3.37 may be

rewritten in the form

oo o4 open | 2ALTE II1-3.%0
1-Af!

-This equation may then be differentiated to obtain




expressions for the fourth, fifth, and higher derivatives.

Asymptotic expressions for f, f', and f" valid for
large negative values of g must once again be obtained in
order to start the numerical integration. Here, just as in
the case of homogeneous laminar mixing, the manner in which
these asymptotic expressions are obtained depends upon
whether uz =0 or uz £0.

If vz =0, then once again from the boundary condi-

tions  III-3.38

n - e
£1(p) -0
f(n) - -8 IIT-3.41

Then for large negative values of g, equation III-3.37 may

be written

11 n ‘
T -ds-F5 . - - TII-3.42
But £ -0 for g - -, therefore
1/2 8
f'(n) ~ k1 e n, n - - III-3.43

To determine the constants ki and S, the same technique
as that employed by Iessen* in the homogeneous case will be
used. The new dependent and independent variables are

a(x) = % £ (n) TI1-1.29

X = 3p I111-1.29

Equation I11-3.37 becomes

! -2aq"

e LE - I
+5 99" =gTAg IIT-3. 44

q
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where

Q= 1/s7
It is again assumed that q may be represented by
1/2x 3/2X
a(x) = Bo + B: e + Be & + Bs © toees

III"‘B . 45

Substituting this relationship into equation  III-3.4%4,
o
equating coefficients of e ZX, n=11 2, 3 and recalling

that q (-») = -1, it can be shown that

Bo = -1

By =1

B: = -(A + Q)/4Q III-3.46
Bz = (6A% + 13QA + 5Q2)/72Q7

Since A o if the densities of the two streams are the

it

same, these relationships reduce to equations III-1.36
for the homogeneous case.

Equation III-3.45 may be differentiated to obtain
expressions for q' and q" for some large negative value of
X. Equation III -3.44 may then be integrated by analytic
continuation. However, in this case the value of the
constant S may not be obtained directly since the quantity
Q = 1/8® appears in the asymptotic expressions for g, q'
and q". Therefore, it is necessary in this case to assume
a value for S and then carry out the integration to large
positive values of xX. S may then be calculated from

equation III-1.34. This procedure is repeated until the




assumed value of S agrees with that calculated from equation
III_]—. 340
In this case the asymptotic form of f(p) for large

negative values of p is given by

f(n) = To + T2 el/2 i T2 e i + Tsa 63/2 i + eee
III-3.47
where
To = -5
T: =5
Tz = B=S
Tas = BsdS IIT.3.48

If uz £ o0, then the transformation f(n) = fﬁ(n)dn

1s again used. Equation III-3.37 becomes

1ne _:_L 2 _ —2Ay"w'2 2A2W'4
WIS 4 g WS = ST - (Tmmne TLIR3R9

mnt

W

In the limit for large negative values of 7, the terms on
the right hand side of this equation vanish and thus to a
first order of approximation the asymptotic solution of

equation ITI-3.49 is given by equation III-1.44, i.e.,

W= g + 20 [erfc(-/0; g)J ITT-1.4%4

0, *
For large negative values of 5, w, w', and w" may represented
by equations  III-1.145, I1T-1.46 and III-1.47. The
solution is again by trial and error to determine that
value of Ci for which the boundary condition at infinity is
satisfied, i.e.,

I (m) =W(oo) =1
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If - =), then from the first of equations III-3.39,
the constant A becomes infinite. In this case equations

II1I1-3.37 and III-3.49 may be rewritten as

na
TN YT S III-3.50
2 £
and
" na 1 2 _ ew''w!@ 2w'e
W W' "W + 2 W' - W - WE 111-3051

From the definitions of A and T, it follows that if -T"' = X,
then
Piur = p2U2

i.e., the momentum of the two streams is the same.

Case 2 Arbitrarvy Schmidt Number*

The equations to be solved simultaneously in this case

are
g.l}_l(i + %ﬁ -0 ITI-3.3
u*-gﬁ.i,v*-g‘?r:,g-g%ze III—3.13/
u* Q%g&tl + ¥ ﬁéggil =y %§,[p g%:‘+ K ux %%]
IIT-3.27

The boundary conditions are the same as for Case 1. Once
again a stream function is used to integrate the equation

of continuity. The application of an affine transformation

* The author is indebted to Professor L. N. Tao for pointing
out the exact differential form used in this case.




then results in the definition of the same new independent

and dependent values as in Case 1. Thus, using equations
I11-1.20, I11-1.22 and  ITI-3.29 equation IIZ-3.13,

rewritten in terms of the stream function y, transforms to

11
'2’1% - %—, ITT-3.52

Equation ITT-3.24, when rewritten in terms of the stream

function g, transforms to

- £ [pf" & £1p] = (pf")! 4 K (£1p') I1I-3.53

Equations IIT1-3.51 and I11-3.50 may be combined to

give
p'ef" + " [(14+K) p'2 - Kpp"] = 0 I1I-3.54
or
R '
e -0 I1I-3.55
o'k
Integrating
1K
P _ ¢
- = L1
oK III-3.56
or
X
—%_—IZ' — sz” III—B- 57
p

Taking the Kth root of both sides

—ﬁ‘ﬁ _ g VK ITI-3.58
P

kT



-1/K 1/K

-Kp = Cq4 + Cs J‘(f”) dn I1T-3.59
or
o O , G2 femYE gy TII-3.60

Equation TIIT-3.52 may be rewritten as

£ (1K) AL ok Py g TII-3.61
o

Multiplying equation  ITII-3.58 by ,01/K gives

©

1/K
= Ca (pf") III-3.62

® |

Substituting for p'/p and p"/p' according to
equations III-3.62 and  III-3.52, equation III-3.61

becomes
Prr f”[(l'*'K)Cs([bf”)l/K -K (- —g—l—{—)] =0 ITI-3.63
or
K+l
T _%. " = —(14K) Cspl/K " TK ITI-3.64
1/K
Substituting for p from equation  III-3.60 this becomes
1/K - Kl
e g ot = B oo [(£)7 any £ K
III"3-65
or
1 1/K -1 1+Sc
f”! n _2_ ff” - (1+SC)[CS + J‘(f”) dn] f”
III-5.66
where

Cs = C4/Cs




The boundary conditions are

(=) = 1
2 1-)
£1(-=) = U = I+
ol=) = px
p(-=) = p2 IIX-3.67

Applying these boundary conditions to equation ITI-
3.60,

1/K
pL = [

1/K [ ¢

oz I (£") 7 dn TIT-3.68

~-3c
—C, = P2 -
Cas e ITI-3.69
and
-3c -3¢
Cs = P3 = Po IIT-3%.70
se [ (£")5° ay
Thus,
Sc
® S¢
_ _QA _ pl 1 .
Cs = Ca = o g J (£") dn IIT--3.71
P, - Pl e

The equation to be solved to obtain the velocity distribution
is
1 Sc -1 14Sc

f”l _2_ ff” — (l + SC)[CS + “r f” d'r)] f”

III -3 . 72
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When solving this equation by the method of analytic
continuation, the cases of u2 = o0 and us # o must once
again be differentiated. Only the case for which us £ o

will be considered here. Using the transformation
£(n) = [ win) dn, equation IIT-3.72 becomes

" " 1 > Sc(1 + Sc) w'SC N lw'
wiowh - wE 5w =

s + [ (w1) 3¢ ap ]

-0

2 Sc + 1
_ () + 8c) w!

s + [ (W) ay 3

" I1I-3.7>2
Here again, in the limit for large negative values of g,
the terms on the right hand side of this equation vanish.
Thus, the asymptotic forms for w, w' and w" are again given
by equations III-1l.45, ITI1-1.46 and IIT-1.47. How-
ever, these asymptotlc forms contain the unknown constant Cai.
Thus, the solution is again by trial and error. However,
in this case an additional complicating factor is present.
The constant Cs contains an integral from minus infinity

to plus infinity. The author was unable to evaluate Cs
untll equation III-3.71 had been integrated to large
positive values of n. This means that both the constants
Cs and C1 had to be assumed. Equation III-3.73 may then
be integrated to large positive values of 5. The correct
values of Cs and C: are those for which the boundary
condition at infinity is satisfied and the value of Cs cal-

culated from equation III-3.61 agrees with the assumed




value. Once the proper values of Cs and Ci have been
determined and equation III-3.73 has been integrated, it
follows from equation III-3.60 that the density dis-

tribution 1s given by
n 1
p=[-Sc (Ca+Ca [ (w)°Capq =° IIT -3.7%

The terms on the right hand side of equation III-3.73
contain the Tfactor

n
(wt) 5 ap
The asymptotic value of this term for large negative m may
be obtained by substituting for w! from equation III-1.46
and performing the indicated integration to obtain a
complementary error function. The integration of this
term is then carried out step by step along with the
integration of equation IITI-3.73.

ITT-4 Heterogeneous Turbulent Mixing

If molecular diffusion is neglected, then u = u* and
v = v¥, Thus, neglecting molecular diffusion and the
effect of molecular viscosity, it follows from equations
I1I-3.3, III-3.1% and III-3.23 that the equations

of continuity, diffusion and momentum may be written as

U, oY _ ITI-4
St =0 .1
P L _ TII-
u—%}z + v 3y 0 4y o
alpu) alpu) _ III.)
R el 4,3
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The additional assumptions associated with these equa-
tions are outlined in sectlon III-3. The velocity
components and the density are assumed to be composed of

an average plus a fluctuating component. Thus,

us=1u+u'
V=V + v
p=7+ o' TTI-b. 4

Introducing these equations into equation III-4,1 and

time averaging, the continuity equation becomes

AU AV _ o oau', av'_ }
X Ty T @ a tay = O TIL-4.5

Similarly, the diffusion equation, with the boundary layer

assumptions, becomes (t)
t

TR LT . =¥ -

UKtV 3= 3y III-4.6
where Jy(t) is the turbulent mass flux in the y-direction
defined by

Jy(t) N ITI-4.7

And the momentum equation, with the boundary layer
assumptions, becomes
galeuw) 723w 3 gg (%)
u Sy + v 5y = 3y [ u Jy + txy]
IIT-4.8
Substituting equations II-1.1% for the turbulent shearing

stressT xy and assuming that
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TIT-%.9

where § is the eddy diffusivity, equation III-4.6
becomes

=30, = ap _ o (t) 3%

U A vy =8 —3§£L III-4.10

and equation  III-4.8 becomes

—olpu) ., =3(pn) _ 3 o (t)ap T A
U PV TTRY (W™ 3y + P eyl

oy
III"')‘I'oll
or
’ﬁ 6(31—1) +-\_f B(Ba) — €§.._ [Klﬁ.a:—Q_i.—_a}:l.]
3% 3y 3y 3y T P Ly
III—)"!'.]E
where
Kt = 1/55(t) TIT-4.13

and Sc{t) is the turbulent Schmidt number defined by

solt) o /gt TII-4, 14

Thus, the equations to be solved simultaneously are

A AV _ III-4.
ax Ty T ° 5
~3p ., T3 _ 1 2P III-4.
uax+vay GK%% ~4.15
galpn) galbu 2 g,
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The eddy viscosity ¢ will be assumed to be represented by

Prandtl's exchange coefficient hypothesis, i.e.,
€ =X‘b(u1 - 1.12) II-—l.lS

with b = ¢ X . Once again the cases of a Schmidt number
of unity and an arbitrary Schmidt number must be differen-

tiated.

Case 1 Sc =1

Integrating the continuity equation using a stream
function and applying an affine transformation, it can again
be shown that y/X and p/x are invariant under the trans-
formation. Thus, a new independent variable is

- X
E =0 p I1T-2.7

3 /XA

and a new dependent variable is

where

o

F(g) = p/Ux I11-2.8
where

U = %(ul + uz)
Also,

p = plg) IIT-4.16

In terms of these new variables, equation III-4.15

becones

"2O'F = 'Blli III ")'l'o 17
p




III-4.12 becomes

ogp - [T
[F' ]

Solving equations

and equation

ITI-4,18 and

as in section I1I-3, gives

B!
P = 1-AtgE!
"t mno_ -EA'”FHZ
F + 20‘F‘F‘ - l-A!O'F'

ITi-%4.18

ITI-4.17 simultaneously,

ITI-%.19

III-4.20

The development given in this section is similar to

that given by Pai.* Equation

however, it was apparently first derived by Hu.®*

III-4%.20 was given by Pai,

Pai's

development was used as a gulde for the laminar similarity

solution developed in section
The boundary conditions are
oF ' (=) = %L =14+ X
of ' (~=) = %3 =1-2
P(m) = p1
p(-=) = p2

From these boundary conditions and equation

constants A' and B' are given by

R
'+ )
t_ A(3-1)

I1I-2.

111—4.21

I11-4.19 the

IIT-4.22

By using the following relationships
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I1I-4.23

equations III-4.19 and III-4.20 with boundary conditions
IIT-%.21 may be converted to equations III-~3.36 and
IIT-3.37 with boundary conditions III-3.38. Thus, here
also a simple relationship exists between the solution of
the heterogeneous turbulent mixing problem using Prandtl's
exchange coefficient hypothesis and the solution of the

heterogeneous laminar mixing problem.

Case 2 Arbitrary Schmidt Number

A similarity analysis of equations III -4.5, III-
4,15 and III-%.12 yields

(t) 1+Sc
F" 4+ 20FF" = (148c(®)) ol + jg (0F")5C" Tag 1T (F")
TIT -4.24
(t) (t)
p = [‘Sc(t)(c4'+03' jg(oF”)SC dﬁ]—l/sc
- ITT-4.25
whe
e -Sc(t) —Sc(t)
-Ca! = £2 =Pz TII-4.26
o (t)
SC(t):r (O_FH)SC dg
-Sc(t)
~Cg4t = P2 __ I1I-4,27
sc(t)




(t)
Sc ) (t)
v _ G _ __ m nySe
Go! =G T (T mom L T %

P= I Y

TII-4.28
The boundary conditions are given by equations II1-4,21.

By using the following relationships

£1(p) = oF'(¢)

—_——

1+

n=e VY £

Ca' = Cs,/[e’sc(t)+l (1005 se(t)y -211

Ca' = Ca

Cs' = [2-3c<t)+1 (100) 3 sl %] TIT-4.29

equations IIT-%#.24% and IIT-4.25 with boundary conditions

TIT -4.21 may be converted to equations III -3.72 and

ITT -3.74% with boundary conditions III-3.67. Thus, once
again a simple relationship exists between the turbulent
and laminar solutions.
I1i- 5 The Indeterminateness of the Third Boundary

Condition
In each of the four previous sections of this chapter,

the ordinary differential equation from which the veiocity
distribution was to be determined was of the third order.
However, in each instance only two boundary conditions on
the velocity were specified. A third applicable boundary

condition is not readily apparent.
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Most previous investigators'’®?% have arbitrarily

specified this third condition as

£1(o) = § =3 (1 + 3 III -5.1

for the laminar case with U = uy, or
F'(o) =38 =1 TIT -5.2
for the turbulent mixing case with U = %‘(ul + Uz ).

Physically, these boundary conditions specify that the
line y* = 0 passes through the points where the velocity
is the arithmetic average of the two free stream velocities.
This means that the line y* = 0 is not the x-axis and the
rectangular coordinate y and y* are not one and the same.
In other words, the functions f(5) and F(¢) are written in

terms of the new independent variables n* and g*, where

n* = y* /G/VX IIT-5.3

and
- o X

The first two boundary conditions remain the same when

written in terms of the new independent variables.

In the laminar case, the line y* = 0 is a parabola given
by

T s ke
/X

where ko is a constant. Since y* = 0 along this line, the

relationship between y* and the rectangular coordinate y is

-given by




y* =y - ke /X III-5-5

Combining equations III=5.5 and IIT-5.3, the relation-

ship between n* and n is given by

n = (y-ka/ x) f ufvx = n - ke //ﬁi; n-mno

1%
III"B ° 6

The constant ko must be determined experimentally.
Similarly, in the turbulent mixing case, the line y* = o
is a straight line given by

y = mX III-537
Since y* = o along this line, y* and y are related by

y*¥ =y - mx I11-5.8

Combining equations III~-5.8 and III-5.%4,
£ = o(y-mx)/X = ¢ -om= ¢ - & - ITI-5.9

In this case the constants ¢ and mn must both be determined
experimentally.

In summation, if the third boundary condition is arbi-
trarily specified, as in equations IIT-5.1 and III—5.2;
then the laminar solution contains one empirical constant
to be determined experimentally and the turbulent solution
contains two empirical constants to be determined
experimentally.

The remaining discussion in this section will be re-
stricted to the laminar case. However, because of the
relationship between the laminar and turbulent solutions,

the discussion applies equally as well to the turbulent case.
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An alternate form of the third boundary condition was
discussed by Iessen® and by Crane.** The stream function
¥, as defined in section III-1, is given by

g =/ Uvx f(n) T1T-1.23

The boundary between the fluid of both streams rust be a
streamline and also must pass through the point x = 0,

y = 0. From equation III-1.23, it can then be seen that
p = 0 1s the boundary streamline. Iessen and Crane

suggested that the third boundary condition be specified as

p(n,) =0 I11-5.10
Combining equations I11-5.10 and I17-1.23, the third
boundary condition is given by

flno) =0 II1-5.11

If the function f is written in terms a new independent

variable n* = n - 71 , then the third boundary condition

becomes

flo) = 0 I1I-5.12

The boundary streamline is glven by

—‘/—,:}X( = no / % III"5°]—3

To determine the position of this streamline in the x-y
plane, the value of n, must be known. Crane suggested that
n, be determined experimentally.

von Karman® proposed that the third boundary condition
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be given by
WiVi + UsVz =0 I11-5.14

where vi and vz are the v-component of velgcity for g - =
and n - -» respectively. Physically, this boundary condi-
tions specifies that no external forces are acting on the
total fluid system perpendicular to the main flow, i.e.,
u1v: represents the transfer of X-momentum in the y-direction
for n - » and uzvze represents the transfer of x-momentum in
the y-direction for 5 - -«. If there is to be no net
external force acting on the total fluid system perpendicular
to the main flow, then the sum of these two terms must be
ZEero.

Yen*® has shown that this boundary condition may be used
to determine the value of n, and thus locate the y = O stream

line in the x-y plane. The three boundary conditions are

' o) = ua/U =1

F'(-w) = /U1 = 1-)/1+r I11-5.15
and

WVy + Usve = O III-5.14

In addition to these conditions, it is known that along the
streamline y = 0, n = g, oOr

(o) = © T11-5.12
If p* is the independent variable, then from equations

ITI-5.15 for p* - o
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) » g% -, ¥ - = I11-5.16

and for n* - -
1-

£(n*) - (02) 7 = B ¥ = == ITT-5.17

The stream function y 1s given by

p(x,y) = S Uvx £(n*) = / Uux £(n-q,) I11-5.18
Thus, since v= -3y/aX, v is given by

V=35 Uy/X [—f(n*) - nf'(n*)] I1I-5.19
It then follows from equations IIT -5.16, IIT-5.17 and

IT1I-5.15 that for * -
v o% [T T11-5.20
- ) v/ X [a—i—;?o], n - o_ -5.
and for n o -
1 -

v -3 fT/x (Bt 0 (F2) 5 - = III-5.21

Finally, combining equations II1-5.20, I11-5.21
and III-5.15, equation III-5.14 becomes

1- 1-A A

[11e + no] + (T3] 1B+ g (7)1 =0 IT1-5.22

or
NEDN
%%i _ By + mo (335) I11-5.23
-[0‘-*‘770]

Instead of equation III-5.23, Yen obtained the

condition

14x _ B+ mo(1-))
- 7 o + o (1))

I11-5.24



The form of this equation is slightly different because
Yen applied the boundary conditions

' (=) = 1+
f1(eo) = 1 - ) ITI-5.25

instead of equations I11-5.15. However, the denominator
of the term on the right hand side of equation 1IT-5.23
is preceeded by a minus sign, whereas there is no minus
sign in equation  III-5.24,

Yen obtained equation IIT -5.24% by considering the
momentum equilibrium in the y-direction for fluid within a
control surface in the x-y plane. Performing an integra-
tion from minus infinity to plus infinity, Yen wrote one

of the terms as

{(32) Lt (T4A) ] - (T-0)[B + m(1-1)13 7
n= -
I11-5.26
He then stated that in order to insure convergence of the
integral, the terms inside the outer brackets in equation
117-5.26 must vanish or equation  III-5.24 must be
satisfied.
Equation III-5.26 should have been written as
n=- n =
(M) [ + m_(240) 33 - (-8 + n (1)1} 7
II1-5.27

or
n=-

(I Lo+ ng (TA) ] + (1-X)[B + 9, (1-X) 73 g
I1I-.5.28

-0
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then, in order to insure convergence of the integral, the

terms inside the outer brackets nust vanish or

- L= £ n.llo III-5.29
~lo + Mg (1A )]
Thus, Yen's condition as stated by equation IIT -5.24
is wrong. However, if us = 0, i.e., x = 1, then from either

equation III-5.29 or equation III-5.2%4,
o+ n, () =0 IIT -5.30

Therefore, Yen's condition is valid for the case of x = 1l.

Yen concluded from the numerical data of Iock that for
X = 1, the mixing region deflects toward the stationary
fluid whereas for ) = 0.5 the interface deflects toward the
higher velocity stream. The second conclusion is invalida-
ted by the error in equation III -5.24 (see section IV-
1-1).

A complete set of boundary conditions for the homogen-
eous laminar mixing problem is given by equations III-5.1%4,

I1I-5.15 and III-5.12. The application of these bound-

ary conditions leads to equation III -5.23 from which the
value of 7, may be calculated without experimental data.
For the case of heterogeneous laminar mixing, equation III-

5.14% is logically extended to
P11V + P2uzvVz = 0 11T -5.31

The constant n, is then calculated from the relationship

p[10a + n] + p [T 108 + mo(F52)1 = 0 III-5.32




or
1-2

oy (1+A) _ B+ ny (55 IIT -5.33
po (1-2) -[a + 1,1

With these boundary conditions, the laminar mixing
problem is completely determined and the turbulent mixing
problem contains only the empirical constant g to be

determined experimentally.
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Iv. CAICUIATION PROCEDURES

The solutions of the differential equations given in
Chapter III were obtained basically by the method of
analytic continuation. The procedures that were used to
obtain the final solution for each special case are outlined
in this chapter. There is, or course, no need to describe
the solutions of the laminar and the turbulent problems
separately since only the solution of the laminar problem
was actually calculated. The solution for the turbulent
problem was obtained by transformation of variables in each
case. Most of the calculations were done on the ITT IRM
7040 computer.

When integrating an equation by the method of analytic
continuation, it is necessary to specify the initial value
of the independent variable and the increment size for the
numerical integration. The initial value of the independent
variable in each case was specified as that value for which
the velocity, as calculated from the asymptotic expression
for f' was identically equal to the asymptotic value of the
velocity in the first four or five decimal places out of
eight. The increment size wes halved until the results no
longer changed.

Section Iv-4 is included to describe the method of
determining the value of the constant ¢ from experimental

data.




| IV-1 Similarity, Homogeneous Case
Iv-1-1 u, = 0

A schematic diagram of the calculation procedure is
shown in PigureIv-1l-l.1l. TFirst, equation II1-1.30 was
integrated by the method of analytic continuation using
equation III-1.35 to represent the solution for a large
negative value of x . DNext, the value of S was calculated
from equation TIIT-1.34%. Equation II1-1.24% was then
integrated by analytic continuation using equation

I11-1.37 to represent the solution for a large negative
value ofy .
Equation III-5.12 requires that
f(np*) =0, n* =0 III-5.12

The independent variable in the solution obtained as out-
lined above was designated 77. To determine the relaticnship
between 7 and n*, the tabulated values of f(#) were examined.
That value of 7 for which f(#) = O was designated n* = 0 in
accordance with equation IJI-5.12 above. Thus, n* is equal
to 7 plus or minus a constant.

The values of ® and B were next calculated from
equations II1-5.16 and III -5.17. The value of 7, was
then calculsated from equation III-5.23.

Knowing the value of n,, the v-velocity profiles were
then calculated from equation  III-5.19 recalling that n* =

T_‘ "noo
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Integrate Calculate S ' Integrate
equation using equation }————s= equation
III 'lo 30 III "l- 34 III —l. 24
Calculate Calculate o, B8 and Determine
v-velocity profiles using equations the relationship
using equation [ III-5.16, III-5.17% between
ITT -5.19 and TIT -5.23 7 and n*
Transform
results . using Tabulate
equations results
II "'10 25

Fig.J7v-1-1.1. Calculation Procedure
Homogeneous Case, uz = 0O




Iv-1-2 uz £ 0

A schematic diagram of the calculation procedure is shown
in FigureIv-1-2.1. Equation III-1.40 was integrated by the
method of analytic continuation using equations  ITI-1.45,

TII-1.46 and TIII-1.47 to represent w, w'!' and w" for a
large negative value of 7m. Since these equations contain
the unknown a constant C: it was first necessary to assume
the value of Ci. Equation ITI-1.40 was then integrated to
a large positive value of 7 and the boundary condition given
by equation III-1.4%4 was applied. This process was re-
peated, assuming new values of Ci until the boundary
condition given by equation ITI-1.44 was satisfied.

Next, the function f was calculated by integrating w,
i.e., f = [wdn. It follows from equation III-1.25 that
if £ = 0, then "' also must be zero. Since w" = £'"',
the location of the point where f = 0 was fixed at that
point where w" = 0. The values of f were then obtained
for plus and minus values of 7n* by integrating forward and
backward from the point where f (7*) = 0, n* = O.

The values of a and B were then calculated from
equations I1T-5.16 and 1III -5.17 and 7, was calculated
from equation I1I-5.23. DNext, the v-velocity profiles
were calculated using equation I1T-5.19 and the turbulent
solution was obtained by transformation of variables using
equations IT1-1.25. The laminar and turbulent solutions

were then tabulated.
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Assume Integrate Apply
c1 _ equation boundary condition
ITI-1.40 given by
equation
ITIT -1l.49

!

A

Calc?late . Calculate ¢, B,
v-veloclty profile | ang n_ using Calculate f
using equation ma— ations ITT -5.16, by integrating w
III-5.19 III -5.17 i.e. T = [fdn
and ITI-5.23
Transform Tabulate
results using| .| results
equations

Fig.Iv-1-2.1. Calculation Procedure
Homogeneous Case, uz £ O




Iv-2 Similarity, Heterogeneous Case
Iv-2-1 Sc = 1.0, uz = 0
A schematic diagram of the calculation procedure is
shown in FigureIV-2-1.1. Equation TIIT-3.44 was integrated
by analytic continuation using equation III-3.45 to re-
present the solution for a large negative value of .
Since equations III-3.44 and III-3.45 contain the un-
known constant Q = 1/82, it was first necessary to assume
a value of this constant. After integrating equation
III-3.44 to a large positive value of x, the value of S
was calculated from equetion III-1.34. This procedure
was repeated until the assumed and calculated values were
the same. ZFXquation III-3.37 was then integrated using
equation III-3.47 to represent the solution for large
negative values of 7. The remaining procedure for this
case parallels that described in sectionIV-1-1 for the

homogeneous case.

IV-2-2 Sc = 1.0, uz £ 0

A schematic diagram of the calculation procedure is
shown in Figure T¥2-2.1. Equation III-3.49 was integrated
by analytic continuation using equations III-1.45, III-1.46
and IITI-1.47 to represent w, w' and w" for a large negative
value of n. As described in section IV-1-2, the constant Ci
was obtained by trial and error procedure.

The function f was then calculated by integrating w.
It follows from equation III-3.27 that if f = 0, then



T2

Assume

Integrate
equation

Q = 1/52

TIT-3.44

Calculate S

.1 using equation

TEL-1.34%

A

Calculate «, B and no

Determine the

Integrate
equation
IIT -3.37

using equations relationship

TII-5.16, ITI-5. between

17, III—"'SoBB ‘,:\’ aIld. 'n*
Calculate " Transform

v-velocity profils

using equation
I11-5.19

Y

results using |
equations
ITT-1.25

Tabulate
results

Fig.IV-2-1.1 Calculation Procedure
Heterogeneous Case 5S¢ = 1.0, uz = 0




-velocity profiles
using equations

e am—

Calculsate ¢, B and no
using equations
IIT-5.16, III-5.17

ety —

Integrate Apply boundary
Assume Cl >1 equation -
condition given
111-3.49 by equation
II1-1.49
-1— J
Calculate Calculate f

by integrating w
i.e.,f = fwdn

III-5.19 I11-5.35
Transform results Tabulate
using equations | results

III —10 25

Fig. TW2-2.1.

Heterogeneous Case Sc =

Calculation Procedure
lOO’

uz % O
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2Af"®

1nv — —
e B Iv-2-2.1
Qor
1" EAW'Z _
' - T = O Iv-2-2.2

The location of the point where f = 0 was fixed as that
point where equationIV-2-2.2 above was satisfied. The
values of f for plus and minus values of n* were then ob-
tained by integrating forward and backward from the point
where £(n*) = 0, n* = 0. The remaining procedure for this
case parallels that described in sectionIV-1-2 for the

homogeneous case.

IV-2-3 Sc /A 1.0, uz £ 0
A schematic diagram of the calculation procedure is

shown in FigureIV-2-3.1. Equation III-3.73 was integrated
by analytic continuation using equations III-1.45,

TIF1l.46 and I¥I-1.47 to represent w, w' and w" for a
large negative value of 5. In this case, it was necessary
to assume the values of the constants C; and Cs. Equation

ITT-3.73 was then integrated to a large positive value of
n. The boundary condition given by equation III-1.49 was
then applied. Keeping the assumed value of Cs constant,
nev values of Ci were assumed until the boundary condition
given by equation III-1.49 was satisfied. The value of
the constant Cs calculated from equation III-3.71 was
then compared with the assumed value of Cs. This procedure

was repeated until the boundary condition given by




Assume C;3
and Cs

L =] equation

Integrate

Apply boundary

III ‘5 . 73

w»condition given by
equation IIT-1.49

!

Calculate &, 8 an

No using equations
ITT-5.16, IIT-5.17
JIT -5.33

i Calculate f

bt
i.e., £ = [wdn

by integratingw

Calculate C4
from equation
IIT-3.71

Calculate

v-velocity profile >

using equations
IIT -5.19

Transform results
using equations
1T1.-1.25

Tabulate
results

Fig.IV-2-3.1 Calculation Procedure
Heterogeneous Case Sc £ 1.0, uz # O
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equation III-1.49 was satisfied and the value of Cs
calculated from equation IIT-3.71 agreed with the
assumed value.

The function f was then calculated by integrating w.
It follows from equation III-3.72 that if f = O, then

”l+Sc
(l+SC)nf -~ -0 IV-2-3.1
Cs + I (f”) dn

—f'” +

or

145c

n S5 =0 IV-2-3.2
Cs + I (W') dn

(148¢) w!

-w' +

The location of the point where f = O was fixed as that point
where equationIV-2-3.2 above was satisfied. The values of f
for plus and minus values of n* were then obtained by in-
tegrating forward and backward from the point where f(n) = O,
n* = 0.

The remaining procedure for this case parallels that
described in sectionIV-1-2 for the homogeneous case. The
procedure outlined in this section was followed for one
case of a Schmidt number of unity in addition to those cases
for which 8¢ # 1.0. If Sc = 1.0, the value of the constant
Cs can be calculated by analytically integrating equation

IIT-3.71. The values of the constant Cs calculated
from the numerical integration and the analytic integration
of equation IIT -3.71 agreed exactly in the first five

decimal places.




IV-3 Determination of ¢

The similarity solution of the turbulent mixing problem

contains only the constant ¢ to be determined experimentally.

(See section III -2). The method of determining ¢ from
experimental data is as follows: For a particular value of
X, the numerical solution by the method of analytic
continuation provides the u-velocity profile as a function
of the similarity variable ¢. Since this velocity profile
approaches the free stream velocities asymptotically, it
is first necessary to suitably define the boundary layer
thickness. The boundary layer thickness is defined here
as that distance through which the u-velocity component
changes from ui + .05 (u; - uz) to uz - .05 (ui-uz). From
the numerical solution, the change A ¢ in the independent
variable ¢ corresponding to the above mentioned change in
the u-velocity component can be determined. Next, from the
experimental data the change A y in the rectangular
coordinate y corresponding to the same change in the u-
velocity component can be determined at a particular value
of the downstream coordinate x . The constant g can then

be calculated from the relationship

At=0 Q;Z IV-3.1

It will be recsalled that o is given by

o= % /X:LC)\ Iv-3.2

where X; is a dimensionless constant, )\ is given by

_ Li-ue -3,
A= T IV-3.3

and ¢ is the constant of proportionality in the relation-

ship expressing the linear increase of the width of the

7 -
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mixing region b with downstream distance x, 1.€.
b = CX IV"'BOH’

Thus, if the width of the mixing region is defined as in

the previous paragraph, then equationsIV-3.1 andIV-3.1 may

be combined to give

c =A5§ IV-3.5

Therefore, the constantsc and x: may be easily calculated

once the value of o has been determined.
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APPENDIX A

NUMERICAL RESUITS, HOMOGENEOUS CASE

Tabulated Results

Table Al.l1.- ) = 0.2

u \A
n € U1 %l_
4,897 -2.236 0.667 0.028
-4 297 -1.962 0.669 0.025
-3.697 -1.688 0.673 0.019
-3.097 =141 0.680 0.007
-2.497 -1.14%0 0.695 -0.012
-1.897 -0.866 0.719 -0.036
-1.297 -0.592 0.755 -0.061
-0.697 -0.318 0.800 -0.082
-0.097 -0.04L 0.851 -0.091
0 0 0.859 -
+0.103 +0.047 0.868 -0.091
0.703 0.321 0.915 -0.082
1.303 0.595 0.952 -0.065
1.903 0.869 0.976 -0.,048
2.503 1.143 0.996 -0.034
3.103 1.417 0.996 -0.024
3.703 1.691 0.999 -0.022
4,303 1.873 1.0 -0.021




Table Al.2, x = 0.4

u av
n £ 1 Uy
-6.184 -2.614 0.429 0.108
-5.584 -2.360 0.431 0.105
-4,984 -2.106 0. 434 0.099
-4 ,384 -1.853 0.440 0.087
-3.,784 -1.599 0.451 0,068
-3.184 -1.346 0.471 0.038
-2.584 -1.092 0.503 0.000
-1.98%4 -0.839 0.549 -0.045
-1.384 -0.585 0.612 -0.089
-0.784 -0.331 0,688 -0.123
-0.184 -0.078 0.769 -0.1%0
0 0 0.794 _—
+0.16 +0.007 0.796 -0.141
0.616 0.260 0.869 -0.132
1.216 0.51% 0.926 -0.110
1.816 0.768 04963 -0.085
2,416 1.021 0.984 -0.067
3.016 1.275 0.994 -0.056
3.616 1.528 0.998 -0.051
4,216 1,782 1.0 -0.048
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Table Al.3, x = 0.6

u av
T’ g ul ul
-7.809 -3.087 0.250 0.215
-T7.009 -2.778 0.252 0.212
-6.609 -2.612 0.253 -
-6.209 2,454 0.254 0.205
-5.809 -2,295 0.257 -
-5.409 -.2.109 0.261 0.190
-5.009 -1. 980 0.266 -
-4.609 -1.820 0.27h 0.164
4,209 0.285 -
-3.809 -1.505 0.300 0.120
-3.409 "10397 0-321 -
-3.009 -1.189 0.347 0.058
-2.609 -1.031 0.380 -
-2.209 -0.873 0.422 0.018
-1.809 -0.715 0.471 -
-1.409 -0.557 0,527 0.093
-1.009 -0.399 0.590 -
-0.609 -0.241 0.656 -0, 144
-0.209 -0.083 0.723 -
0 0 0.756 -
+0.191 +0.075 0.786 -0,155
0.591 0.234 0.843 -
0.991 0.392 0.891 0.131
1.391 0.550 0.929 -
1.791 0,708 0.956 0.094
2.191 0.866 0.975 --
2.501 1.024 0.986 0.071
2,991 1.182 0.993 -
3.391 1.340 0.997 0.059
2.791 1.498 0.999 ==
4,191 1.656 0.999 0.056
4.391 1.736 1.0 -




Table Al.%, X = 0.8

u \A
n 3 o T

-9.986 -3,720 0.111 0.326
-9.586 -3.571 0.112 -
-9,186 -3, 422 0.112 0.324
-8.786 -3.273 0.112 -
-8.386 =3.124 0.113 0.321
-7.986 -2.975 0.114 -
-7.586 -2.826 0.115 0.315
-7.186 -2.677 0.117 -
-6.786 -2.528 0.119 0.304
-6.386 -2.379 0.123

-5.986 -2.230 0.127 0.285
-5.586 -2,081 0.133 -
-5.186 -1.932 0.142 0.255
-4,786 -1.783 0.153%

-4, 386 -1.634 0.168 0.209
-3.986 -1.485 0.186 -
-3.586 -1.336 0.211 0.149
-3.186 -1.187 0.241 -_—
-2.786 -1.038 0.278 0.066
-2,.386 -0.889 0.324 -
-1.986 -0.7hk0 0.377 0.021
-1.586 -ooggl 0.439 -
-1.186 -0.4h2 0.507 -0.097
-0.786 -0.29% 0.580 -
-0,386 -0.144 0.655 -0, 140
0 0 0.725 -
0. 414 0.154 . 0.795 --
0.814 0.303 0.853 -0.127
1.214 0.452 0.901 -
1.614 0.601 0.937 -0.091
2.014 0.750 0.962 -
2.414 0.899 0.979 -0.060.
2,814 1.048 0.989 -
3,214 1.197 0.995 -0.044
3,614 1.346 0.998 --
k.014 1.495 0.999 -0.039
y oy 1.645 1.0 -0.037




8h

Table Al.5, Xx = 1.0
u av
n 3 oW U
-9,.376 -3.315 0,004 0.4215
-8.976 -3.174 0.005 0.4178
-8.576 -3,032 0.006 0.4131
-8.176 -2.891 0.009 o0.ho74
-T.776 -2.750 0.011 0.4o0ok
-T.376 -2,608 0,014 0.3921
-6.976 -2.467 0.018 --
-6.576 -2.325 0.024 0.,3703
-6.176 -2,18%4 0.030 -
-5.776 -2,0u42 0.038 0.3376
E 376 -1.901 0.049 -
976 -1.760 0.062 0.2931
-b,576 ~-1.618 0,078 --
~4.,176 -1 477 0.099 0.2337
~3.776 -1.335 0,124 -
-3.376 -1.194 0.156 0.1583
-2.976 -1.052 0.194 -
-2.576 -0.911 0.239 0.0613
-2.176 -0.769 04239 -
-1.776 -0.628 0.354 -0.0166
~-1.376 -0,487 0.423 -
-0.976 -0.342 0.499 -0.0863
-0.576 -0.20 0.578 -0.1180
-0.176 -0.062 0.657 -
0 0 0.691 --
0.224 0.079 0.733 -0.1182
0.624 0.221 0.802 -
1.024 0.362 0.861 -0.0909
1.424 0.504 0,907 -
1.824 0.645 0.94%2 -0.,0510
2,224 0.786 0.966 -0,0344
2.624 0.928 0.981 -0,0208
3,024 1.069 0.991 -0.0123
3,420 1.211 0.995 -0,0057
3.824 1.352 0.998 -0.0033
4, o2k 1.40k4 0.999 -0.0010
4, 624 1.635 1.00 -0.0007




A2.

Calculated Constants

Table A2.1
A o ﬁ 770 Eo
0.2 0.18973 0.22382 -0.23465 -o.1o71d
0.4 0.32339 0.45013 -0.43619 -0.18431
0.6 0.41790 0.68622 -0.55488 -0.21934
0.8 0.48400 0.93367 -0.58057 -0.21638
1.0 0.53007 - -0.53007 -0,18743
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APPENDIX B
NUMERICAL RESULTS, HETEROGENEOUS CASE
Tabulated Results, Sc = 1.0

Table Bl-l, r = —002, >\ = 100

u A

n ¢ p W o
-14,157 -5.005 1.000 0.000 0, 378
-13.757 ~-4.,864 1.000 0.001
-13.357 L, 702 1.000 0.001 0. 377
-12.959 -1,581 1.000 0,001
-12.557 -4, 4ho 0.999 0.001 0. 375
-12.159 4,298 0.999 0.001 -
-11.757 4,157 0.999 0.002 0.373
-11.357 -4.015 0.999 0.002 -
-10.957 -3.874 0.999 0.003 0.3%69
-10.557 =3, 732 0.998 0.003 -
-10.157 -3.591 0.998 0.004 0.364
-9.757 -3.450 0.997 0.005 -
-9.357 -3.308 0.997 0.006 0.356
-8.957 -3.167 0.996 0.008 0.346
-8.557 -3%,025 0.995 0,010 -
-8.157 -2.884 0.994 0,012 -
-7.957 -2.742 0.993 0.015 0.231
-6.957 -2.460 0.989 0.023% 0.310
-6.557 -2.318 0.986 0.028 -
-6.157 -2.177 0.983 0.035 0,282
-5.757 -2.035 0.979 0.043 -
-5.357 -1.894 0.974 0.053 0.245
- 0957 _10753 00968 00066 -




Table Bl.1l (Continued)
u av
n P U1 1
-i,551 -1.611 0.961 0.081 0.197
4,157 -1.470 0.953 0.100 _—
-3.757 -1.378 0.942 0.120 0.136
-3.357 -1.187 0.930 0.150 -
-2.957 -1.045 0.916 0.183 0.065
-2.557 -0.904 0.900 0.223 -
-2,157 0.763 0.881 0,270 -0.013
-1.757 -0.621 0.860 0.324 -
-1.357 -0, 480 0.838 0.387 -0.085
-0.957 -0,338 0.815 0.457 -
-0.557 -0.197 0.790 0.533 -0.134
-0.157 -0,056 0.766 0.612 -
+0.,043 +0.015 0.754 0.652 -0.145
0.443 0.157 0.733 0.729 -
0.843 0.298 0.714 0.800 -0.122
1.24% 0.439 0.699 0.861 -
1.643 0.581 0.687 0.909 0,085
2.043 0.722 0.679 0.945 -
2.443 0,864 0.674 0.969 0.034
2.84% 1.005 0.670 0.983% -
3,243 1.147 0.669 0.992 -0.011
3,643 1.288 0.668 0.996 -
L. o4z 1.429 0.667 0.998 ~-0,003
4,643 1.642 0.667 1.000 -0.001
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Table Bl.2,

r=-13, x=1/3

u aVv
n £ p U1 w1

-5.978 -2.289 0,999 0,500 +0.000
-5.578 -2.416 0,998 0.501 --
-2.178 -2.242 0.997 0.502 -0.002
“4,778 -2.069 0,994 0.503 -
4,378 -1.896 0.990 0.505 -0.010
-3.978 -1.723 0.984 0.508 -
-3.578 -1.549 0.975 0.513 -0.023
-3.178 -1.276 0.962 0.520 --
-2.778 -1.203 0.944 04530 -0.046
-2.378 -1.030 0.921 0.543 -
-1.978 -0.857 0.891 0.561 -0.78
-1.578 -0.683 0.856 0.584 -
-1.178 -0.510 0.815 0.613 -0.,113
-0.778 -0.337 0.771 0.649 -
-0.378 -0.164 0.724 0.690 -0.139
-0.78 -0.077 0.701 0.713 --
0 0 - 0.734 -
+0.022 0.010 0.678 0.727 -0.142
0.422 0.183 0.635 0.787 -
0.822 0.356 0.598 0.836 -0.125
1.222 0.529 0.567 0.882 -
1.622 0.702 0.543 0.921 -0.082
2.022 0.876 0.526 0.950 -
2.422 1.049 0.515 0.971 -0.039
2.822 l.222 0.508 0.985 -
3,222 1.395 0.504 0.992 -0.014
4 o022 1.742 0.501 0.999 -0.005
4,622 2.002 0.500 1.000 -0.003




Table Bl.3,

= -1/3, A = 0.6

u ov
n £ p 1 Ui
-8.288 -3.275 0.999 0.250 0.098
-7.888 -3.118 0.999 0.251 -
-7.488 -2.959 0.998 0.251 0.096
-7.088 -2.801 0.997 0.252 -
-6.688 -2.643 0.996 0.253 0.091
-6.288 -2.485 0.994 0.255 -
-5.888 -2.237 0.991 0.257 0.082
-5.488 -2.169 0.987 0.260 -
-5.088 -2,011 0.981 0.264 0,065
-4,688 -1.853 0.973 0.271 -
-4,288 -1.695 0.963 0.279 0.038
-%.888 ~-1.537 0.950 0.290 -
-3,488 -1.378 0.933 0.304 0,000
-%.088 -1.220 0.912 0.323 -
-2.688 -1.062 0,886 0.346 -0.051
-2.,888 -0.904 0.857 0.375 -
-1.888 -0.746 0.823 0.411 -0.109
-1.488 -0.588 0.786 0.454 -
-1.088 -0.430 0.746 0.505 -0.163
-0.688 -0.272 0.706 0.563 -
-0.288 -0.11% 0.665 0.627 -0,196
-0.088 -0.035 0.646 0.661 -—
0.00 0 - 0,676 -
0.112 -0.044 0.628 0.695 -0.198
0.512 0.202 0.596 0.762 -
0.912 0.360 0.566 0.825 -0.173
1.312 0.519 0.544 0.880 -
1.712 0.677 0.527 0.923 -0.123
2.112 0.83%5 0.516 0.954 -
2.512 0.993 0.509 0.974 -0.081
2.912 1.151 0,504 0.967 -
3.312 1.309 0.502 0.994 -0.060
3,712 1. 467 0.501 0.997 -
4,112 1.625 0,500 0.999 -0.052
4 5312 1.783 0.500 1.000 : -
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Table Bl.%, T = -1/3, x» = 0.8

u oV
€ P W ey

~4,011 1.000 0.111 0,211
—50862 00999 0-112 o=
-3.713 0,999 0,112 0.209
-3.564 0.999 0.112 -
-3.415 0.998 0.113 0.207
-3,266 0.997 0,113 -
-3.117 0.996 0.114 0.202
-2.968 0.995 0.115 -
-2,.819 0.993 0.117 0,193
-2.270 0.991 0.119 -
-2.521 0,988 0.122 0.180
-2,372 0.984 0.126 -
-2,223% 0.979 0.130 0,160
-2,074 0.972 0,137 -
-1.925 0.96L4 0,144 0.132
-1.776 0.954 0.154 -
-1.627 0,941 0,167 0.092
-1.478 0.926 0.183 -
~-1.329 0.907 0.202 0,040
-1,180 0.885 0.226 -
-1.031 0.860 0.255 -0.023
-0.882 0.83%2 0.291 -

-0.732 0.800 0,334 -0,091
-0.584 0.765 0,384 -
-0.435 0.729 0.442 -0,154
-0.286 0.691 0.508 -

-0.137 0.655 0.580 -0,193
-0.062 0.637 0.618 -
0.000 - 0.649 -
0.012 0,620 0.656 -0,197
0.161 0.589 0,731 -
0.310 0.563 0.801 -0.175
0.459 0.542 0.862 -
0.608 0.527 0.910 -0.126
0.757 0.516 0.946 -
0.906 0.509 0,970 -0.082
1.055 0.504 0.984 -
1.205 0.502 0,992 -0.058
1.359 0.501 0.997 --
1.503% 0.500 0.999 -0.050

1.652 0.500 1.000 -




Table Bl.5,

I‘:: "O‘)'l" A = 1.0

u ov
n € p U1 U1
-10.976 -%.881 0.99k 0.00F 0.30%F
-10.376 -3,668 0.99% 0.006 0.297
-9.776 -3.456 0.990 0.007 -
-9.376 -3.315 0.988 0.009 0.288
08.976 -3.,173 0.986 0.011 -
-8.576 3,032 0.983% 0.013 0.275
-8.176 -2.891 0,980 0.016 -
-T7.776 -2,749 0.976 0.019 0.258
-T.376 -2,.608 0.971 0.022 -
-6.976 -2, 466 0.965 0.027 0.237
-6.576 -2,325 0.959 0.032 -
-6.176 -2,184 0.951 0.039 0,209
-5.776 -2,042 0.941 0.047 -
-5.376 -1.901 0.930 0.056 0.174
-k,976 -1.759 0.917 0.068 .
4,576 -1.618 0,902 0,081 0.13%0
~4.176 -1.476 0.885 0.098 -
-3.776 -1.335 0,864 0.118 0.077
~3.376 -1.194 0,841 0.141 -
-2.976 -1.052 0.815 0.170 0.015
-2.576 -0.911 0.786 0.204 -
-2.176 -0.769 0.755 0.244 0.052
-1.776 -0,628 0.720 0.291 -
-1.376 -0.486 0.684 0,347 0.116
-0.976 -0.345 0.647 0.410 -
-0.576 -0.204 0.609 0.481 0.162
-0.176 -0.062 0.572 0.559 -
0 0 - 0.594
0,024 +0,008 0.556 0.599 -0,173
0.424 0.150 0.525 0.680 -
0.824 0,291 0.497 0.758 -0.149
l.224 0.4%3 0.475 0.827 -
1.624 0.574 0.459 0.885 -0.095
2.024 0.716 0. 447 0.929 -
2. 4204 0.857 0.439 0.959 -0.041
2.824 0.998 0.U434 0.978 -
3.224 1.1%0 0.431 0.989 -0.01%4
3,624 1.281 0.430 0.995 -
b,024 1,423 0.429 0.998 -0.003%
L hol 1.564 0.429 0.999 -
4,824 1.706 0.429 1.000 0
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Table Bl.6, T = -0.6, A = 1/3

u oV
n E p Uy U1
-5.719 -2.476 0,997 0.500 -0.048
-5.319 -2,303 0.995 0.501 -
-4.917 -2.130 0.991 0,501 -0,051
-4.519 -1.957 0,986 0.502 -
-4.119 -1.784 0.977 0,504 -0.056
-3.719 -1.610 0.963 0.506 -
-3.319 -1.457 0.945 0.510 -0.065
-2.919 -1.264 0,919 0.515 --
-2.519 -1.091 0,886 0.521 -0.080
-2,119 -0.918 0.845 0.531 -
-1.719 -0, 744 0.795 0.543 -0.099
-1.319 -0.571 0.738 04559 -
-0.919 -0.398 0.675 0.580 -0.121
-0.519 -0.225 0.609 0.607 -
-0.119 -0.052 0.543 0.640 -0.134
0.081 0.035 0.510 +0.660 -0.134
0.481 0,208 0.450 0.702 -
0.881 0.381 0.396 0.754 -0.114
1.281 0.555 0.352 0.807 --
1.681 0.728 0.317 0.859 0.056
2.081L 0.901 0.291 0.905 -
2.481 1.074 0.274 0.941 +0.016
2.881 1.248 0.263 0.967 -
3.281 1.421 0.257 0.983 0.067
3.681 1.594 0.253 0.992 -
4,081 1.767 0.251 0.996 0.087
4 o481 1..940 0.251 0,998 -
4,881 2,113 0.250 0,999 0.092
5.081 2.201 0.250 1.000 -




Table Bl.7, TI' = -0.6, ) = 0.6
n £ p %l %¥

-8.366 -3.306 0.998 0.250 -0.002
-7.966 -3.149 0.997 0.251 -
-7.566 -2.990 0.995 0.251 -0.00%
-7.166 -2,832 0.993 0.252 -
-6.766 -2,67h 0.989 0.253 -0,008
-6.366 -2,516 0.98%4 0.254 -
-5.,966 -2.358 0.977 0.256 -0.016
-5.566 -2.200 '0.968 0.258 _—
-5.166 -2.042 0.956 0.261 -0.029
. 766 -1.884 0.941 0.266 -
-4.506 -l.727 0.921 0.271 -0,048
-3.966 -1.568 0.896 0.279 -
-3.566 -1.409 0.867 0.288 -0.,073
-3.166 -1.251 0.832 0.301 -
-2,766 -1.093 0.791 0.316 -0.107
-2,366 -0.935 0.746 0.335 -
—10966 —O 771 00696 00359 —001)4'6
-1.566 -0.619 0.642 0.389 -
-1.166 -0.461 0.587 0.k426 -0.188
-0.766 -0.303% 0.531 0.471 -
-0.366 -0.145 0. 477 0.524 -0.217
0,034 +0.013 0.427 0.586 -o,eéi
0.434 0.172 +0,382 0.654 _
0.834 0.330 0,34k 0.726 -0.196
1.236 0.488 0.31% 0.797 -
1.634 0.646 0.291 0.860 -0.132
2,034 0.804 0.295 0.911 -
2,434 0.962 0.261 0.948 -0.063%
2.834 1.120 0.257 0.972 -
3,234 1.278 0.254 0.986 -0,021
3.624 1.436 0.250 0.994 , -
4,034 1.594 0.251 0.997 -0,006
L 43 1.753 0.250 0.999 —_
4, 134 1.911 0.250 1.000 -0,001
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9k

Table Bl.8, T = -0.6, ) = 0.8

u gV
n £ o S ur
-11.622 -4.330 0.999 0,111 +0.105
-11.221 -4.181 0,998 0.112 -
-10.822 -4,032 0.998 0.112 0.104
-10.422 -%,883 0.996 0.112 -
-10.022 -3.734 0.996 0,112 0,101
-9.622 -3.585 0.994 0.113 -=
-9.222 -3, 436 0.992 0.11% 0,098
-8.822 -3.287 0,989 0,114 -
-8.422 -3.138 0.986 0.115 0.091
-8.022 -2.989 0.981 0.117 --
-7.622 -2.840 0.976 0.119 0.082
—79222 "2-691 00969 00121 -
-6.822 -2.542 0.960 0.123 0.069
-6.422 -2.393 0.949 0.127 -
-6.022 -2.244 0.93%6 0,131 0.050
-5.622 -2,095 0.921 0.137 --
-2.222 -1.946 0.902 0,143 0.025
-1,822 -1.797 0.880 0.151 -
-4, 420 -1.648 0.855 0.161 -0.008
-4, 0022 -1.498 0.826 0.171 -
-3.,622 -1.349 0.793 0.186 -0.048
3,222 -1.200 0.756 0.207 -
- -2,822 -1.051 0.715 0.229 -0.096
-2, 422 -0.902 0.671 0.256 -
-2.022 -0.753 0.625 0.28y -0.150




Table Bl.8 (Continued)

u ov
n g p U1 U1
-1.622 -0.60k4 04577 0.329 —_
~1.222 -0.455 0.528 0.376 -0.202
-0.822 -0,306 0.480 0.4%22 -
-0.422 -0.157 0434 0.497 -0.238
-0.022 -0.008 0.392 0.570 -
0 0 _— 0.575 -
40,178 +0.066 0.373 0.609 -0.243
0.578 0.215 0.339 0.689 -
0.978 0.364 0.311 0.766 -0.209
1.378 0.513 0.290 0.836 -
1.778 0.662 0.275 0.894 -0.145
2.178 0.811 0.264 0.936 -
2.578 0,960 0.258 0.965 -0.089
2.978 1.110 0.254 0.982 -
3.378 1.259 0.252 0.991 -0.060
3.778 1.408 0.251 0.996 -
4,178 1.557 0.250 0.998 -0.050
4,378 1.631 0.250 0.999 -
4,778 1.780 0.250 1.000 -0.049
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Table Bl.9,

= -0.6, » = 1.0

u ov
n g p u1 1
-15.267 -5.398 0.996 0,001 0.254
14,867 -5.256 0.995 0,002 -
-4, 467 -5.115 0.994 0,002 0.251
14,067 4,973 0.993 0,002 -
-13.667 -4,.832 0.992 0.003 0.248
-13.267 -4,691 0.991 0.003 -
-12,867 -4.549 0.990 0.003 0.24%4
-12.467 -4, 408 0,988 0.004 -
-12,067 -4,266 0.986 0.005 0,238
-11.667 -4, 125 0.984 0.005 -
-11.267 -3.983 0.982 0.006 0.232
-10.867 -3.842 0.979 0.007 -
-10.467 -3.701 0.975 0.008 0.223
~10.067 -3.559 0.971 0.010 -
-9.667 -3.418 0.967 0.011 0.213
-9.267 -3.276 0.960 0.013 -
-8.867 -3.135 0.956 0.015 0.200
-8.467 -2.994 0.949 0.018 -
-8.067 -2.852 0.941 0.021 0.183
-7.667 -2.711 0.9%2 0.024 -
-7.267 ~2.569 0.921 0.028 0.163
-6.867 -2.428 0.909 0,033 -
-6.467 -2.,286 0.896 0.039 0.138
-6.067 2,14 0,880 0.045 -
-5.667 -2.00 0.863 0.053 0.108




Table Bl.9 (Continued)
u ov
n g P w1 Uz
-5.267 ~-1.862 0.843 0,062 -
-L,867 -1.721 0.821 0.073% 0.072
Y -1.379 0.796 0.085 -
-k, 067 -1.438 0.769 0.100 0.028
-3.667 -1.296 0,739 0.118 -
03,267 -1.155 0.705 0.139 -0.022
-2.867 -1.014 0.670 0. 164 -
-2.h67 -0.872 0.631 0.195 -0.078
-2.067 -0.731 0.591 0.230 -
-1.667 -0.589 0.550 0.273 -0.135
-1.267 -0.448 0.507 0.324 -
-0.867 -0.307 0.465 0.383 -0.183
-0, 467 -0.165 0.425 0.451 -
-0.067 -0.024 0.387 0.527 -0.206
0 o} - 0.541 -
+0.333 0.118 0.354 0.609 -
0.733 0.259 0.325 0.693% -0,187
1.133 0.401 0.301 0.773 -
1.533 0.542 0.283% 0.843 -0.127
1.93% 0.683% 0.270 0.899 -
2.333 0.825 0.262 0.940 -0.062
2.733 0.966 0.256 0.963 -
%.133 1.108 0.253 0.98% -0.021
5.533 1.249 0.251 0.992 -
5.933 1.391 0,250 0.996 -0.005
4,333 1.532 0.250 0.999 -
4,733 1.673 0.250 0.999 -0.002
4,933 1. 744 0.250 1.000 —

97



Table Bl.10, T = -0.75, A = 1/3

u av
n £ P 1 1
-2.385 ~2.332 0.995 0.500 -0.062
-4,985 -2.159 0.991 0.501 -
-4.585 -1.986 0.985 0.501 -0,064
-4,185 -1.812 0.975 0.502 -
-3.785 -1.639 0.961 0,503 -0.068
-3,385 -1.466 0.941 0.505 --
-2.985 -1.293 0.914 0.505 -0.075
-2.585 -1.119 0.878 0.512 --
-2.185 -0.946 0.834 0.517 -0.084
-1.785 -0.773 0.780 0.523 --
-1.385 -0.600 0.719 0.533 -0.097
-0.985 -0 427 0.650 0.545 -
-0.585 -0.253 0.577 0.561 -0.098
-0.185 -0.080 0,503 0.582 -—
+0,015 -0,006 0.467 0.585 -0.,113
+0.415 0.180 0.398 0.626 -
+0.815 0.353% 0.3325 0.665 -0,100
1.215 0.526 0.232 0.713 -
1.615 0.700 0,238 0.767 -0.045
2.015 0.873 0.205 0.824 -
2.415 1.046 0,181 0.878 +0,050
2.815 1.219 0.165 0.923 -
3.215 1.392 0.155 0.956 0,143
3.615 1.565 0.149 0.977 -
h,015 1.739 0.146 0.989 0.194
4,415 1.912 0.144 0.995 --
4,815 2.085 0.143 0.998 0.210
5.015 2.172 0.143 0.999 --
5.415 2,345 0.143 1,000 0.214




Table Bl.11l, 7= -0.75, x = 0.6

L ov
n p W U1
-8.396 -3.319 0.996 0.250 -0.061
-7.996 -3.160 0.995 0.251 -
-7.596 -3.002 0.992 0.251 -0.062
~-7.196 -2,84L 0.988 0.252 -
-6,.796 ~-2.686 0.983 0.052 -0.067
-6.396 -2.528 0.975 0.053 -
-5.996 -2,370 0.965 0.25%4 0.072
-5.596 -2,212 0.953 0.256 -
-5.196 -2.054 0.936 0.259 -0.081
4,796 -1.896 0.915 0.262 -
-, 396 -1.738 0.890 0.265 -0.093
-3.996 -1.579 0.860 0.270 -
-3.596 $1.421 0.823 0.277 -0.111
-3.196 -1.263 0.782 0.285 -
-2.796 -1.105 0.735 0.285 -0,134
-2.396 -0.947 0.684 0.308 -
-1.996 -0.789 0.628 0,324 -0.161
-1.596 -0.631 0.570 0.344 -
-1.196 -0.473 0.510 0.370 -0.190
-0,796 -0.315 0.451 0.402 -
-0.396 -0.157 0.395 0. 42 -0.212
-0.196 -0.077 0.368 0.465 -
0 0 - 0.490 :
+0.,004 0.002 0.342 0.491 -0.215
0.koh 0.160 0.295 0,549 -
0.804 0.318 0.254 0.617 -0,194
1.204 0.476 0.220 0.692 -
1.604 0.634 0.194 0.768 -0,122
2,004 0.792 0.175 0.838 -
2,404 0.950 0.162 0.897 -0.022
2.804 1.108 0.153 0.9%40 -
3.204 1.266 0.148 0.968 +0,055
3.604 1. 424 0.146 0.98%4 —-—
4 ook 1.583 0,144 0.993 +0,091
L Lok 1.741 0.143 0.997 -
4, 8ok 1.899 0.143 0.999 0,101
5.204 2,057 0,143 1.000 0.103
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Table Bl.12, T'= -0.75, x = 0.75

u ov
7 13 p U1 U1
-10.452 -3.950 0.996 0.143 -0.003
-9.652 -3.648 0.992 0.144 -0.005
-8.852 -3.345 0.985 0.145 -0.008
-7.052 -%.043 0.973 0.147 -0,014
-T.252 -2.741 0.955 0.150 -0,022
-6.u52 -2.438 0.928 0.154 -0.03%3
-5.652 -2.13%6 0.888 0,161 -0.049
-4.852 -1.834 0.835 0.171 -0.069
-4.052 -1.531 0.766 0.187 -0,095
-3.252 -1.229 0.681 0,210 -0.120
-2, 52 -0.927 0.584 0.245 ~-0.164
-1.652 -0.624 0.480 0,298 -0.205
-0.852 -0.322 0.379 0.277 -0.241
-0.,052 -0.020 0.290 0.493 -0.261
+0.148 +0.056 0.270 0.528 -0.260
0,948 0.358 0.208 0.687 -0.227
1.748 0.661 0.170 0.812 -0.069
2.548 0.963 0.152 0.942 ~0.069
3,548 1.265 0.145 0.985 -0.018
4,348 1.568 0.143 0.997 -0.005
4,948 1.870 0.143 1.000 -0.001
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Table B1.13, T =-0.75, A = 1.0
u ov
n E p U3 U1
-17.451 -6.170 0.991 0.001 0.198
-17.051 -6.028 0.990 0.002 -
-16.651 -5.887 0.989 0.002 0.195
-16.251 -5.746 0.988 0.002 -
-15.851 -5.604 0.986 0.002 0,193
15,451 -5.463 0.98%4 0.003 -
-15.051 -5.%21 0.982 0.003 0.189
-1k,651 -5,180 0.980 0.003 -
-14,251 -5.038 0.978 0.004 0.185
-13.851 -4, 897 0.975 0.004 —_—
-13.451 ~4,756 0.972 0.005 0.180
-13.051 ~L.,614 0.968 0.005 -
-12.651 4, 473 0.965 0,006 0.174
-12.251 4,337 0.960 0.007 -
-11.851 -4.,390 0.955 0.008 0.167
-11.451 -4,049 o.9go 0.009 -
-11.051 -3.907 0.944 0.010 0.158
-10.651 -3.761 0.937 0.011 -
-10.251 -3,624 0.929 0.013 0.148
-9.851 -3.483 0.921 0,014 -
-9,h51 -3.341 0.911 0,016 0.135
-9.051 -~3.200 0.901 0.018 -
-8.651 -3,059 0.889 0.021 0.121
-8.251 -2.917 0.876 0.024 -
-7.851 -2.776 0.861 0.027 0,103
-7.451 2,634 0.845 0,031 -
~7.051 -2,493 0.828 0.035 0.083
-6.651 -2.351 0.808 0.040 -
-6.251 -2,210 0.787 0.045 0.058
-5.851 -2,069 0,763 0.052 -
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Table Bl.13 (Continued)

u oy
n 3 P 1 Uy
-5.451 -1.927 0,738 0.059 0.029
-5.051 -1.786 0.711 0.068 -
-4.651 -1.644 0.681 0.078 -0.004
-4.251 -1.503 0.649 0.090 -
-3.851 -1.362 0.615 0.10%4 -0.04%
-3.451 -1.220 0.579 0.121 -
-3.051 -1.079 0.541 0,141 -0,088
-2.651 -0.937 0.502 0.16 -
-2.251 -0.796 0.463 0.19 -0.137
-1.851 -0.654 0.422 0.228 -
-1l.451 -0.513 0.383 0.269 -0,186
-1.051 -0,372 0.343 0.319 -
-0.651 -0.230 0,306 0.377 -0.025
-0.051 -0.018 0.256 0.484 -0.238
0 0 - 0.494 -
+0.149 +0.053 0.241 0.524 -0. 237
0.549 0.194 0.215 0.608
0.949 0.33%6 0.193 0.695 -0, 203
1.349 0.477 0.176 0.778
1.749 0.618 0.164 0.850 -0.131
2,149 0.760 0.155 0.906 -
2,549 0.901 0.150 0.946 -0.060
2.949 1.043 0.146 0.972 -
3,349 1.184 0.14 0,986 -0.019
3. 747 1.325 0,14 0.994 -
4,149 1.467 0,143 0.997 -0,004
4,549 1.508 0.143 0.999 -
k., ohg- 1.750 0.143 1.000 -0.001
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B2. Tabulated Results, 3Sc

Table B2.1l, Sc =

= 0.75 and 0.5

0.75, '= 0.6, X = 1/3

u ov

] £ P 1 Ta
-5.846 -2.531 0.991 0.500 -0.010
-5.046 -2.185 0.977 0.502 -
-4 246 -1.839 0.949 0.505 -0.019
-3 446 -1.492 0.898 0.512 -
-2.646 -1.146 0.818 0.528 -0.052
-1.846 -0.799 0.711 0.558 -
-1.046 -0.453 0.591 0.610 -0.113
-0.246 -0.107 0.475 0.689 -0.135
0.00 0.00 - 0,719 -
+0.154 +0.067 0.425 0.737 -0.136
0,954 0.113 0.346 0.838 -
1.754 0.760 0.296 0.922 ~0.064
2.554 1.106 0.268 0.972 -
3.354 l.452 0.256 0.993 +0.007
4,157 1.800 0,252 0.999 -=
k.957 2,146 0.250 1.000 +0,018
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Table P2.2, S¢ = 0.75, T'= -0.6, X = 0.6

u ov
Ui £ P "L T
-8.297 -3.279 0.993% 0.250 0,068
-7.497 -2.963 0.986 0,251 -
-6.697 -2.647 0.973 0.253 0.061
-5.897 ~2.331 0.950 0.256 -
-5.097 -2,015 0.914 0.263 0.038
-4,297 -1.698 0.861 0,276 -
-3.497 -1.382 0.789 0.300 -0.022
-2.697 -1.066 0.700 0.339 -
~-1.897 -0.750 0.600 0,403 -0.127
-1.097 -0. 434 0.500 0,497 -
-0.297 -0,117 0.411 0,622 -0.216
0 0 - 0.673 -
+0.103 0.041 0.374 0,691 -0.218
0.903 0.357 0.317 0.823 -
1.703 0.673% 0,281 0.922 -0,143
2.503 0.989 0.262 0.974 -
3.303 1.306 0.254 0.994 -0.078
3.70% 1. 460 0.252 0.997 -
4,503 1.780 0.250 1.000 -0.070
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Table B2.3, Sc = 0.75, I' = -0.6, ) = 0.8

u ov
77 g p 953 'L]_l
-10,877 4,053 0.994 0.111 0.181
-10.077 =3.754 0.990 0.112 -
-9.277 ~3.156 0.984 0.113 0.177
-8. 477 -3.158 0.973 0.114 -
~T.677 -2.860 0.958 0.116 0.165
-6.877 -2.562 0.93%6 0.121 -
-6.077 -2.264 0.904 0.128 0.136
-5.277 -1.966 0.831 0.141 -
=L a7 -1.668 0.805 0.161 0.073
3,677 ~-1.370 0.725 0.193 --
-2.877 -1.072 0.654 0.243 -0.037
-2.077 -0.774 0.566 0s+319 -
-1.277 -0.476 0.h479 0,426 -0,.172
-0.477 -0.178 0.401 0:565 -
-0.077 -0.029 0.358 0.642 -0.225
+0.32% 0.120 0.339 0.718 -0.,222
1.123 0.418 0.296 0.853 -
1.923 0.715 0.270 0.941 -0,138
2.723% 1.015 0.258 0.982 -
3.523 1.313 0.252 0.996 -0.087
3.923% 1.462 0.251 0.998 -
4,723 1.760 0.250 1.000 -0,082
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Table B2.4, Sc = 0.75, I'= -0.75, x = 0.75

u av
n g P U1 U1
-10.047 -3.780 0.984 0.143 0.084
-9.247 ~3.479 0.972 0,14l -
-8. 447 ~%,178 0.956 0.145 0.078
-T.647 -2.877 0.930 0.148 _—
-6.847 ~2.576 0,893 0.152 0.058
-6.047 -2.27 0.842 0.159 --
~5.247 -1.97 0.775 0.170 0.016
I, 4hy -1.673 0.694 0.190 -
-3.647 -1.372 0.601 0.221 -0.066
-2.,847 -1.071 0.502 0.270 -
-2.047 -0.770 0.405 0,345 -0.195
-1.247 -0,469 0.318 0.455 -
-0 4u7 -0,168 0.250 0.597 ~-0.308
-0.047 -0.018 0.223 0.674 —
0.00 0.0 _— 0.680 -
0.353 +0,133 0.201 0.751 -0.312
1.153 0.434 0.171 0.879 -
1.953 0.735 0.154 0.956 -0.235
2.753 1.036 0.147 0.988 -
2.55% 1.337 0,144 0.998 -0.199
4.353 1.638 0,143 1.000 -0.198
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Table B2.5, 8¢ = 0.5, T'= -0.6, A = 1/3

u oV

n £ p Uy U1
-6.,000 -2,598 0.968 0.500 0.020
-5.2 -2.252 0.940 0.502 -
=44 -1.905 0.894 0.505 0.009
-3.6 -1.559 0.828 0.514 -
-2,8 -1.212 0.7h2 0.53%4 -0.034
-2,0 -0,866 0.64% 0.573 -
-1.2 -0.520 0.542 0.637 -0.118
-0.U -0.173 0.451 0.724 -0, 147
-0.0 0.00 0. 412 0.774 -
0.4 +0.173 0.378 0.823 -0.148
1.2 0.520 0.325 0.908 -
2.0 0.866 0.290 0.963 -0.073
3.8 1.212 0.269 0.989 -
3.6 1.559 0.258 0.997 -0.045
bk 1.905 0.253 1.000 -0.043
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Table B2.6, Sc = 0.5, I'= -0.6, x = 0.6

u oV
K £ P 1 U1
-8.206 -3.243 0.970 0.250 0.124
-7.406 -2.927 0.952 0.251 --
-6.606 -2.611 0,924 0.253 0.116
-5.806 -2.295 0.886 0.258 --
-5.006 -1.979 0.834 0.267 0.085
4,206 -1.662 0.769 0.285 -
-3.406 -1.346 0.692 0.318 0.003
-2.606 -1.030 0.609 0.37k -
-1.806 -0, 714 0.525 0.459 -0.136
-1.006 -0.398 0. 4h7 0.575 -
-0.206 -0.081 0.382 0.709 -0.230
0 0 - 0.742 -
+0.194 +0.077 0.354 0.774% -0.231
0.994 0.393 0.311 0.885 --
1.794 0.709 0.283 0.954 -0.169
2.594 1.025 0.265 0.986 --
3.394 1.342 0.256 0.997 -0.130
4,194 1.658 0.252 1.000 -0.126
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Table B2.7, S¢ = 0.5, I'= -0.6, XA = 0.8
u \'a
n £ p al =

-10.338 -3.852 0.966 0.111 0.146
-9.538 -3.554 0.954 0.112 -
-8.738 -3.256 0.937 0.113 0,241
~7.938 -2.958 0.915 0.115 -
-7.138 -2.659 0.885 0,118 0.226
-6.338 -2,361 0.847 0.125 -
-2.558 -2,063% 0.799 0.137 0.184
-4 ,738 -1.765 0.743 0.157 -
-3,938 ~1. 467 0.679 0.190 0.091
-3,138 -1.169 0.609 0,244 -
-2.3%38 -0.871 0.536 0.325 -0.061
-1.538 -0.573 0.U466 0.439 -
-0.738 -0.275 0. 403 0.580 -0.202
+0.062 0.023 0.351 0.729 -0.221

0.862 0.321 0.311 0.857 -

1.662 0.619 0.283% 0.941 -0.242

2.462 0.917 0.267 0.981 _—

3.662 1.364 0.255 0.998 -

4y 462 1.662 0.252 1.000 -0,112
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Table B2.8, S¢ = 0.5, I'= -0.75, x = 0.75

u av
n € P U1 U1

-9.662 -3.622 0.937 0.143 0,188
-8.862 -3.349 0.916 0. 144 -
-8.062 -3.096 0.88L 0.145 0.177
-7.263 -2.745 0,842 0.148 -
-6.462 -2.443 0.788 0,159 0.155
-2.662 -2.140 0.724 0.163 -
-4, 862 -1.838 0,649 0.181 0.100
-4,062 -1.535 0.568 0.211 --
-3.262 -1.233 0.984 0.259 -0.014
-2.462 -0.931 0.403 0.325 --
-1.662 -0.628 0.331 0.443 -0.172
-0.862 -0.326 0.270 0.580 -
-0.462 -0.175 0.245 0.655 -0.248
-0.062 -0.023 0.223 0.728 -0.252
0.738 0.279 0,190 0.856 -
1.538 0.581 0.158 0.941 -0.203
2.338 0.884 0.155 0.981 -
3.138 1.186 0.198 0.996 -0,148
3.538 1.337 0.146 0.998 -—
4,338 1.640 0. 144 1.000 -0.143
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B5. Calculated Constants
Table B3.1, 3¢ = 1.0

r A o B m €o
-0.2 1.0 0.71613 - -0.71613 -0.25344
-1/3  1/3 0.46572  0.232299 -0.46581 -0,20197
-1/3 0.6 0.70102  0.45902 -0.82713 -0.32697
-1/% 0.8 0.81388 0.67465 -0.9405F -0.35055
-0.h 1.0 0.97986 - -0.97986 -0,34648
-0.6 1/3 0.71372 0.13329 -0.49015 -0.21253
-0.6 0.6 1.11705  0.28007 -1.11705 -0.44183
-0.6 0.8 1.31924  0.44697 -1l. 44646 -0.53910
-0.6 1.0 1.41089 - -1.41089 --0.49889
-0.75 1/3 0.95102 0.08065 -0.44897 -0.194L46
-0.75 0.6 1.55956 0.17502 -1.29797 -0.51309
-0.75 0.75 1.82426  o.26044  -1.824311 -0.68951
-0.8 1.0 2.01403 - -2.01403 -0.71216

v Sc = 0.75
-0.6 1/3 0.50299 0.20387 -0.45537 -0.18745
-0.6 0.6 0.75568  0.40829 -0.93118 -0.3%6809
-0.6 0.8 0.87141 0.61171 -1.08948 -0.40605
-0.75 0.75 1.04683 0.72331 -1.54893 -0.58548
Sc = 0.5
-0.6 1/3 0.38069 0.28055 -0.47090 -0.20418
-0.6 0.6 0.56176 0.53789 -0.87972 -0.34775
-0.6 0.8 0,64492 0,76907 -0.94030 -0.35045
-0.75 0.75 0.69503  0.64307 -1.17084 -0.44258
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